云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高中数学圆锥曲线试题(含答案)

高中数学圆锥曲线试题(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/12/11 10:42:28

故MN的中点为E,|MN|=

|y3-y4|=.(10分)

由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|AB|2+|DE|2=

|MN|2,

|MN|,从而

即4(m2+1)2++=.

化简得m2-1=0,解得m=1或m=-1.

所求直线l的方程为x-y-1=0或x+y-1=0.(12分)

16. (2014四川,20,13分)已知椭圆C:个端点构成正三角形.

+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.

(i)证明:OT平分线段PQ(其中O为坐标原点);

(ii)当最小时,求点T的坐标.

[答案] 16.查看解析

[解析] 16.(Ⅰ)由已知可得

解得a2=6,b2=2,

所以椭圆C的标准方程是+=1.

(Ⅱ)(i)由(Ⅰ)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).

则直线TF的斜率kTF==-m.

当m≠0时,直线PQ的斜率kPQ=,直线PQ的方程是x=my-2.

当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.

设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得

消去x,得(m2+3)y2-4my-2=0,

其判别式Δ=16m2+8(m2+3)>0.

所以y1+y2=,y1y2=,

x1+x2=m(y1+y2)-4=.

所以PQ的中点M的坐标为.

所以直线OM的斜率kOM=-,

又直线OT的斜率kOT=-,所以点M在直线OT上,

因此OT平分线段PQ.

(ii)由(i)可得,

|TF|=,

|PQ|=

=

==.

所以==≥=.

当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.

所以当最小时,T点的坐标是(-3,1)或(-3,-1).

17. (2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.

(1)求椭圆C的标准方程;

(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.

[答案] 17.查看解析

[解析] 17.(1)由题意知c=,e==,

∴a=3,b2=a2-c2=4,

故椭圆C的标准方程为+=1.

(2)设两切线为l1,l2,

①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).

②当l1与x轴不垂直且不平行时,x0≠±3,设l1的斜率为k,且k≠0,则l2的斜率为-y-y0=k(x-x0),与

+

=1联立,

,l1的方程为

整理得(9k2+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0,

∵直线l1与椭圆相切,∴Δ=0,即9(y0-kx0)2k2-(9k2+4)·[(y0-kx0)2-4]=0,

∴(-9)k2-2x0y0k+-4=0,

∴k是方程(-9)x2-2x0y0x+-4=0的一个根,

同理,-是方程(

-9)x2-2x0y0x+-4=0的另一个根,

∴k·=,整理得+=13,其中x0≠±3,

∴点P的轨迹方程为x2+y2=13(x≠±3).

检验P(±3,±2)满足上式.

综上,点P的轨迹方程为x2+y2=13.

18. (2014江西,20,13分)如图,已知双曲线C:线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).

-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近

搜索更多关于: 高中数学圆锥曲线试题(含答案) 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

故MN的中点为E,|MN|=|y3-y4|=.(10分) 由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|AB|2+|DE|2=|MN|2, |MN|,从而即4(m2+1)2++=. 化简得m2-1=0,解得m=1或m=-1. 所求直线l的方程为x-y-1=0或x+y-1=0.(12分) 16. (2014四川,20,13分)已知椭圆C:个端点构成正三角形. +=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一(Ⅰ)求椭圆C的标准方程; (Ⅱ)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q. (i)证明:OT平分线段PQ(其中O为坐标原点);

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com