当前位置:首页 > 云南师范大学附属中学2016届高考适应性月考(四)(理)数学试题(含答案)
【解析】
∴M?N?(0,2],故选C. 1.M?[?2,2],N?(0,2],a?i(a?i)(2?i)(2a?1)?(a?2)i12.是纯虚数,∴2a?1?0,∴a?,故选D. ??2?i552????????????????????????2????2????2????2????????4.∵AB?AC?2AD,∴(AB?AC)2?4AD,即4AD?AB?AC?2AB?AC?
?2????????????????2???????????????(AB?AC)?4AB?AC?CB?4AB?AC?100,∴|AD|?5,故选C.
π?T3π1?|x1?x2|的最小值为?5.因为f(x)?2sin??x??,,所以T?6π,所以??,故选A. 3?423?1)时,最小值为1,故选D. 6.作出可行域如图1中阴影部分,目标函数过点(0,
7.由程序框图知,输出的结果为s?log23?log34?…?logk(k?1)?log2(k?1),当k?7时,s?3,故选B. 8.该几何体为一个正方体截去三棱台AEF?A1B1D1,如图2所示,截面图形为等腰梯形B1D1FE,
1329132?,?,所以S梯形B1D1FE??(2?22)?
22222EF?2,B1D1?22,B1E?5,梯形的高h?5?所以该几何体的表面积为20,故选A.
9.∵数列{an}的前n项和有最大值,∴数列{an}为递减数列,又又S15?a9??1, ∴a8?0,a9?0且a8?a9?0,a815(a1?a15)16(a1?a16)故当n?15时,Sn取得最小正值,故选C. ?15a8?0,S16??8(a8?a9)?0,
2210.圆C:(x?1)2?y2?2,圆心(1,0),半径r?2,因为圆心到直线的距离是3,所以圆上到直线距离
小于2的点构成的弧所对弦的弦心距是1,设此弧所对圆心角为?,则cos?2?12?2?π,所以?,2242ππ21π2π,所以所求概率为即??,?所对的弧长为?2??,故选D. 2222π?2411.当直线l的倾斜角为90?时,|AB|?6;当直线l的倾斜角为0?时,|AB|?2?6.故当直线l适当倾斜
时,还可作出两条直线使得|AB|?6,故选B.
12.当直线y?ax与曲线y?lnx相切时,设切点为(x0,lnx0),切线斜率为k?y?lnx0?1,则切线方程为x011(x?x0),ln2)切线过点(0,0),此时a?;当直线y?ax过点(2,∴?lnx0??1,x0?e>2,x0e时,a?
ln2?ln21?,?,故选A. .结合图象知a??2?2e?第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题5分,共20分) 题号 答案 13 14 22 15 16 3?12 32 817 【解析】 3?5??5??1??1?113.f???f??3??f????f????1?.
2?2??2??2??2?214.如图3,设PQ与AD交于点M,则△DPM∽△CPQ,
DCA,∴DPPM1??,∴PQ?2PM,又△DPM∽△CPPQ2DPPM11??,∴PM?CA?2,∴PQ?22. DCCA33b?c2?a215.由余弦定理cosA?,∴b2?c2?a2?2bccosA,
2bc1∵S?(b?c)2?a2?b2?c2?a2?2bc?2bc(cosA?1),又S?bcsinA,
211∴2bc(cosA?1)?bcsinA,∴cosA?1?sinA,
24218?1?2∴sinA??sinA?1??1,∴sinA?. 即cosA?sinA?1,417?4?16.由题意得:|OF2|?|F2M|?c,设左焦点为F1,连接PF1,则OM为△PF1F2?OF2M?120?,∴|OM|?3c,
的
中
位
线
,
2
∴|P1F?|2,c3又|P2F?|2c,由双曲线定义,得
c13?1??. a23?1三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)
解:(Ⅰ)由已知可得
???xπ??f(x)?a?b?3?6cos2?3sin?x?3?3cos?x?3sin?x?23sin??x??,
23??|PF1|?|PF2|?2a,∴(3?1)c?a,∴e?由正三角形ABC的高为23,可得BC?4,
所以函数f(x)的最小正周期T?4?2?8,即得??2π??8,
π, 4????????????????????????????(4分) π??, 3??πx故f(x)?23sin???4所以函数f(x)的值域为[?23,23]. (Ⅱ)因为f(x0)?????????????????(6分)
83, 5π?π?4?πx?πx由(Ⅰ)有f(x0)?23sin?0??,即sin?0???,
3?3?5?4?4πxπ?ππ??102?由x0???,?,得0????,?,
43?22??33?3?πxπ??4?所以cos?0???1????,
3?5?5??4??πxππ?π??πx故f(x0?1)?23sin?0????23sin??0???43?3??4??42??πx0π??πx0π???23?sin??cos?4??4?3?? 2?3??????π? 4??2?43?76?6?????. ??????????????????????(12分)
555??18.(本小题满分12分)
23,, 解:(Ⅰ)设事件Ai表示“该生第i个项目测试过关”,i?1,4依题意,P(A1)?,P(A2)?x,P(A3)?y,
51?P(??0)?(1?x)(1?y),??5因为?
4?P(??3)?xy,?5?6?1(1?x)(1?y)?,?x?y?1,??5?125所以?即?6且x?y,
xy??4xy?24,?25??125?53?x?,??5解得? ??????????????????????????(4分)
2?y?,?5?于是,a?P(??1)?P(A1A2A3)?P(A1A2A3)?P(A1A2A3) 42313312237
, ??????????
555555555125
6372458, b?1?P(??0)?P(??1)?P(??3)?1????125125125125故该生至少有2个项目测试过关的概率:
582482. ?????????????????(8分) P(??2或??3)???125125125
9. 5 ????????????????????????????(12分) 19.(本小题满分12分) 解:(Ⅰ)如图4,取AB的中点E,连接SE,ED,过F作FG∥SE交ED于G, 因为平面SAB?平面ABCD,并且SA?SB?AB?2, ∴SE?平面ABCD,∴FG?平面ACD,
(Ⅱ)E(?)?0?P(??0)?1?P(??1)?2?P(??2)?3?P(??3)?又ABCD是菱形,?BAD?60?,SE?3,
131且FG?SE?,S△ACD??2?2sin120??3,
222∴三棱锥S?FAC的体积V三棱锥S?FAC?V三棱锥S?ACD?V三棱锥F?ACD
1111?V三棱锥S?ACD???3?3?. 2232????????????????(6分)
(Ⅱ)连接AC,BD交于点O,取AB的中点E,连接SE,则BD?AC,SE?AB,以O为原点,AC,BD为轴建系如图5所示,
设直线BD与平面FAC所成角为?,
0), 则A(?3,0,0),C(3,0,0),B(0,?1,???31313?D(0,,10),S??,,?,3F?,,???2??442??, 2?????????3313?????所以,AF??,,0,0), ??4?,AC?(23,42???设平面FAC的法向量为n?(x,y,1), ?????33?????13AF?n?x?y??0,AC?n?23x?0,
442
共分享92篇相关文档