当前位置:首页 > 1989第六届 全国 初中数学联赛(含答案)
旗开得胜 1989第六届全国初中数学联赛
第一试
一、选择题
1.已知最简根式a2a?b与a?b7是同类根式,则满足条件a,b的值( )
A.不存在 B.有一组 C.有两组 D.多于两组
2.如果关于x的方程mx2?2(m?2)x?m?5?0没有实数根,那么关于x的方程
(m?5)x2?2(m?2)x?m?0实根个数为( )
1OyA.2 B.1 C.0 D.不确定
1x 3.已知二次函数y?ax2?bx?c的图象如图1所示,则下列6个代数式
图 1 ab,ac,a?b?c,2a?b,2a?b中,其值为正的式子个数为( )
A.2个 B.3个
C.4个 D.4个以上
4.在三角形内(不在边上)有3个点,连同原三角形的3个顶点,共有6个点,以这六个点为
顶点作出所有不重叠的三角形,如果这6个点中无点共线,所有三角形的个数为n0,如果这6个点中有三点共线(但无四点共线),所作三角形的个数为n1,如果这六个点中有四点共线,
1
读万卷书 行万里路
旗开得胜 所作三角形的个为n2,那么( )
A.n0?n1?n2
B.n0?n1?n2
C.n0?n1≥n2 D.n0≥n1?n2
5.水池装有编号a,b,c,d,e的5条管,其中有些是进水管,有些是出水管,如果同时开
放两条水管,注满水池的时间如下表
开放水管号 a,b b,c c,d d,e e,a 注满水池的时间(小时) 2 15 6 3 10 那么单开一条水管,最快注满水池的水管编号为 A.a B.b C.d D.c和e
FCDE二、填空题
1.如图2,四边形ABCD中,点E,F分别在BC,CD上,
DF?1,FCA图 2BCE?2,若△ADF的面积为m,四边形AECF的面积为n(n?m),EB则四边形ABCD面积为_________.
2.在十进位中,各位数码是0或1,并且能被225整除的最小自然数是_________.
3.已知x,y都是大于10的实数,lgx的首数是a,尾数是b,lgy的首
数是c,尾数是d,且|1?a|?c?4?1,b?d?1,则xy?________.
DOC 4.已知三角形的外接圆半径为4cm,一个内角为60?,夹这个角的两边之
APB图 3读万卷书 行万里路
2
旗开得胜 差为4cm,那么,这个三角形的面积为________cm.
5.如图3,正方形ABCD的中心为O,面积为1989cm2,P为正方形内一点且?OPB?45?,
PA:PB?5:14,则PB?_______cm.
第二试
一、如图4,三角形ABC中,D,E分别是边BC,AB上的点,且?1??2??3如果△ABC,△EDB,
△ADC的周长依次为m,m1,m2,证明:
m1?m25≤. m4A2二、首项系数不相等的两个二次方程
B1E3D图 4C(a?1)x2?(a2?2)x?(a2?2a)?0, ①
(b?1)x2?(b2?2)x?(b2?2a)?0. ②
(其中a,b为正数)有一个公共根.
ab?ba求?b的值. a?b?a三、设A1,A2,A3,A4,A5,A6是平面上的六点,共中任三点不共线.
⑴如果这些点之间任意连接13条线段,证明:必存在4点,它们每两点之间都有线段连接.
⑵如果这些点之间只连有12条线段,请你画出一个图形,证明⑴的结论不成立(不必用文字说用).
3
读万卷书 行万里路
旗开得胜
1989第六届全国初中数学联赛
答案
第一试
一、选择题
1.B
【解析】 由??2a?b?7?a?b?2,解得唯一一组解:??a?3?b?1.
故选B.
【点评】 这道题应该说非常简单,只需要大家在解方程的时候认真细心,同时加快速度.
2.D
【解析】 因前一个方程没有实根,则其判别式
读万卷书 行万里路
4
共分享92篇相关文档