当前位置:首页 > 2019-2020年高考数学专题复习三角函数与平面向量的综合应用教案文
2019-2020年高考数学专题复习三角函数与平面向量的综合应用教
案文
1.同角三角函数的基本关系式,正弦、余弦、正切的诱导公式常考常新
两角和与差的三角函数、二倍角的三角函数规律性强,对公式的正用、逆用、变形应用的技巧、方法要求较高,考查公式的灵活运用及变形能力.通过简单的恒等变换解决三角函数的化简求值是高考必考内容,且一直是高考的热点.
2.研究三角函数的性质,一般要化为f(x)=Asin(ωx+φ) (A>0,ω>0)的形式,若是奇函数,则可化为f(x)=±Asin ωx;若是偶函数,则可化为f(x)=±Acos ωx.求三角函数的定义域,实际上是利用三角函数图象或三角函数线来确定不等式的解,求函数的单调区间可以转化为求y=sin x与y=cos x的单调区间.
3.解三角形问题主要有两种题型:一是与三角函数结合起来考查,通过三角变换化简,然后运用正、余弦定理求值;二是与平面向量结合(主要是数量积),判断三角形形状或结合正、余弦定理求值.试题一般为中档题,客观题、解答题均有可能出现. 4.平面向量的线性运算,为证明两线平行提供了重要方法.平面向量的数量积的运算解决了两向量的夹角、垂直等问题.特别是平面向量的坐标运算与三角函数的有机结合,体现了向量应用的广泛性. [难点正本 疑点清源]
1.三角函数问题一是化简求值问题,要熟练应用公式,紧扣角的范围,才可避免出错;二是三角函数的性质,要先将函数式化简为y=Asin(ωx+φ) (A>0,ω>0)的形式,再研究其性质.
2.向量的运算法则、运算律与数量的运算法则、运算律形成鲜明对比,要理解它们的联系与区别.要用向量的思想和方法去分析解决问题,一定要突出向量的工具性作用.
题型一 三角函数式的化简求值问题
例1 已知函数f(x)=23sin xcos x+2cosx-1 (x∈R).
2
?π?(1)求函数f(x)的最小正周期及在区间?0,?上的最大值和最小值;
2??
6?ππ?(2)若f(x0)=,x0∈?,?,求cos 2x0的值.
5?42?
探究提高 (1)两角和与差的三角函数公式的内涵是“揭示同名不同角的三角函数的运算规律”,对公式要会“正用”、“逆用”、“变形用”,记忆公式要注意角、三角函数名称排列以及连接符号“+”,“-”的变化特点.(2)在使用三角恒等变换公
式解决问题时,“变换”是其中的精髓,在“变换”中既有公式的各种形式的变换,也有角之间的变换.(3)本题的易错点是易用错公式和角的拆分不准确.
已知向量m=(-1,cos ωx+3sin ωx),n=(f(x),cos ωx),其中
3
ω>0,且m⊥n,又函数f(x)的图象上任意两相邻对称轴的间距为π.
2(1)求ω的值;
π?23?3
(2)设α是第一象限角,且f?α+?=,
2?26?2
π??sin?α+?4??
π+2α
求的值.
题型二 三角形中的三角恒等变换
例2 设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsin A. (1)求B的大小;
(2)求cos A+sin C的取值范围.
探究提高 本题的难点是第(2)问,求解三角函数式的取值范围,首先要根据三角形内角之间的关系进行化简,然后根据已知条件确定角A或角C的取值范围,要利用锐角三角形的每个内角都是锐角,构造关于角A的不等式确定其取值范围,最后利用三角函数的图象和性质确定三角函数式的取值范围.
设△ABC的内角A,B,C的对边长分别为a,b,c且3b+3c-3a=42
2
2
2
bc.
(1)求sin A的值;
π??π??2sin?A+?sin?B+C+?4?4???(2)求的值.
1-cos 2A题型三 平面向量与三角函数
??例3 已知向量m=?3sin ,1?,
4??
x2x??n=?cos ,cos?.
x?
4
4?
(1)若m·n=1,求cos?
?2π-x?的值;
?
?3?
(2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos
B=bcos C,求函数f(A)的取值范围.
探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.
已知A、B、C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),
α∈?
?π,3π?.
?2??2
→→
(1)若|AC|=|BC|,求角α的值;
2sinα+sin 2α→→
(2)若AC·BC=-1,求 的值.
1+tan α
2
8.平面向量与三角函数的综合问题
试题:(12分)设向量a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β,-4sin β).
(1)若a与b-2c垂直,求tan(α+β)的值; (2)求|b+c|的最大值;
(3)若tan αtan β=16,求证:a∥b.
审题视角 (1)利用向量的垂直关系,将向量间的关系转化成三角函数式,化简求值.(2)根据向量模的定义,将求模问题转化为求三角函数最值的问题.(3)转化成证明与向量平行等价的三角函数式. 规范解答
(1)解 由a与b-2c垂直, 得a·(b-2c)=a·b-2a·c=0,
即4sin(α+β)-8cos(α+β)=0,tan(α+β)=2. [4分]
(2)解 |b+c|=(b+c)=b+c+2b·c=sinβ+16cosβ+cosβ+16sinβ+2(sin βcos β-16sin βcos β) =17-30sin βcos β=17-15sin 2β, 最大值为32,所以|b+c|的最大值为42. (3)证明 由tan αtan β=16, 得sin αsin β=16cos αcos β,
即4 cos α·4cos β-sin αsin β=0,故a∥b.
[12分]
[8分]
2
2
2
2
2
2
2
2
第一步:将向量间的关系转化成三角函数式. 第二步:化简三角函数式.
第三步:求三角函数式的值或分析三角函数式
的性质.
第四步:明确结论.
第五步:反思回顾.查看关键点,易错点和规范
解答.
批阅笔记 (1)本题是典型的向量与三角函数的综合,题目难度中档,属高考的重点题型.
(2)本题体现了转化与化归的思想方法.根据向量关系,转化为三角函数式的问题,利用三角函数解决.
(3)易错分析.在将向量关系转化为三角函数式时易出错.在第(3)问中,学生不知道要推出怎样的三角关系式才能说明a∥b.事实上是学生忽略了a∥b的条件.
方法与技巧
1.研究三角函数的图象与性质的主要思想方法是数形结合思想,这主要体现在运用三角函数的图象研究三角函数的图象变换、最值、单调性、奇偶性、周期性、对称性等知识;运用三角函数的图象解决取值范围、交点个数、定义域等内容.
2.三角函数与向量的交汇综合是近几年高考的热点题型,主要从以下两个方面进行考查.
(1)利用平面向量的知识(如向量的模、数量积、向量的夹角),通过向量的有关运算,将向量条件转化为三角关系,然后通过三角变换及三角函数的图象与性质等解决问题.
(2)从三角与向量的关联点(角与距离)处设置问题,把三角函数中的角与向量的夹角统一为一类问题考查.
3.加强数学思想方法的考查,转化思想主要体现在把向量问题转化为三角问题. 失误与防范
1.对于三角函数的化简求值问题,一要熟练应用公式化简,二要注意角的范围. 2.平面向量与三角函数问题,一般是通过向量运算,将其转化为三角函数式,要注意转化的准确性和灵活性.
共分享92篇相关文档