当前位置:首页 > 工程师考试复习(无机非金属材料) - 图文
空隙率是指散粒材料(如砂、石等)颗粒之间的空隙体积占材料堆积体积的百分率。用公式表示如下:P′=(1-V0/V0/)×%=(1- ρ0′/ρo)×% 式中 ρo——颗粒状材料的表观密度,kg/m3; ρ0′——颗粒状材料的堆积密度,kg/m3。
散粒材料的空隙率与填充率的关系为:P′+D′= 1。
空隙率与填充率也是相互关联的两个性质,空隙率的大小可直接反映散粒材料的颗粒之间相互填充的程度。散粒状材料,空隙率越大,则填充率越小。在配制混凝土时,砂、石的空隙率是作为控制集料级配与计算混凝土砂率的重要依据。
四、材料与水有关的性质 (一)亲水性与憎水性
材料与水接触时,根据材料是否能被水润湿,可将其分为亲水性和憎水性两类。亲水性是指材料表面能被水润湿的性质;憎水性是指材料表面不能被水润湿的性质。
当材料与水在空气中接触时,将出现图1.3所示的两种情况。在材料、水、空气三相交点处,沿水滴的表面作切线,切线与水和材料接触面所成的夹角称为润湿角(用θ表示)。当θ越小,表明材料越易被水润湿。一般认为,当θ≤90°时,,材料表面吸附水分,能被水润湿,材料表现出亲水性;当θ>90°时,则材料表面不易吸附水分,不能被水润湿,材料表现出憎水性。
亲水性材料易被水润湿,且水能通过毛细管作用而被吸入材料内部。憎水性材料则能阻止水分渗入毛细管中,从而降低材料的吸水性。建筑材料大多数为亲水性材料,如水泥、混凝土、砂、石、砖、木材等,只有少数材料为憎水性材料,如沥青、石蜡、某些塑料等。建筑工程中憎水性材料常被用作防水材料,或作为亲水性材料的覆面层,以提高其防水、防潮性能。 (二)吸水性与吸湿性 1.吸水性 材料在水中吸收水分的性质称为吸水性。吸水性的大小用吸水率表示,吸水率有两种表示方法:质量吸水率和体积吸水率。
(1)质量吸水率 材料在吸水饱和时,所吸收水分的质量占材料干质量的百分率。用公式表示如下:Wm=(m湿-m干)/m干
式中 Wm——材料的质量吸水率,%;
m湿——材料在饱和水状态下的质量,g; m干——材料在干燥状态下的质量,g。
(2)体积吸水率 材料在吸水饱和时,所吸收水分的体积占干燥材料总体积的百分率。用公式表示如下:WV==(m湿-m干)/Vo×1/ρ水
式中 WV——材料的体积吸水率,%;
Vo——干燥材料的总体积,cm3;
ρ水——水的密度,g/cm3。
5
常用的建筑材料,其吸水率一般采用质量吸水率表示。对于某些轻质材料,如加气混凝土、木材等,由于其质量吸水率往往超过100%,一般采用体积吸水率表示。
材料吸水率的大小,不仅与材料的亲水性或憎水性有关,而且与材料的孔隙率和孔隙特征有关。材料所吸收的水分是通过开口孔隙吸入的。一般而言,孔隙率越大,开口孔隙越多,则材料的吸水率越大;但如果开口孔隙粗大,则不易存留水分,即使孔隙率较大,材料的吸水率也较小;另外,封闭孔隙水分不能进入,吸水率也较小。 2.吸湿性 材料在潮湿空气中吸收水分的性质称为吸湿性。吸湿性的大小用含水率表示,用公式表示如下:W含=(m含-m干)/m干
式中 W含——材料的含水率,%;
m含——材料在吸湿状态下的质量,g; m干——材料在干燥状态下的质量,g。
材料的含水率随空气的温度、湿度变化而改变。材料既能在空气中吸收水分,又能向外界释放水分,当材料中的水分与空气的湿度达到平衡,此时的含水率就称为平衡含水率。一般情况下,材料的含水率多指平衡含水率。当材料内部孔隙吸水达到饱和时,此时材料的含水率等于吸水率。材料吸水后,会导致自重增加、保温隔热性能降低、强度和耐久性产生不同程度的下降。材料含水率的变化会引起体积的变化,影响使用。 (三)耐水性
材料长期在饱和水作用下不破坏,强度也不显著降低的性质称为耐水性。材料耐水性用软化系数表示,用公式表示如下:K软=?饱/?干
式中 K软——材料的软化系数;
?饱——材料在饱和水状态下的抗压强度,MPa; ?干——材料在干燥状态下的抗压强度,MPa。
软化系数的大小反映材料在浸水饱和后强度降低的程度。材料被水浸湿后,强度一般会有所下降,因此软化系数在0~1之间。软化系数越小,说明材料吸水饱和后的强度降低越多,其耐水性越差。工程中将K软>0.85的材料称为耐水性材料。对于经常位于水中或潮湿环境中的重要结构的材料,必须选用K软>0.85耐水性材料;对于用于受潮较轻或次要结构的材料,其软化系数不宜小于0.75。 (四)抗渗性
材料抵抗压力水渗透的性质称为抗渗性。材料的抗渗性通常采用渗透系数表示。渗透系数是指一定厚度的材料,在单位压力水头作用下,单位时间内透过单位面积的水量,用公式表示如下:
K=Qd/hAt
式中 K——材料的渗透系数,cm/h;
6
W——透过材料试件的水量,cm3; d——材料试件的厚度,cm; A——透水面积,cm2; t——透水时间,h;
h——静水压力水头,cm。
渗透系数反映了材料抵抗压力水渗透的能力,渗透系数越大,则材料的抗渗性越差。
对于混凝土和砂浆,其抗渗性常采用抗渗等级表示。抗渗等级是以规定的试件,采用标准的试验方法测定试件所能承受的最大水压力来确定,以“Pn”表示,其中n为该材料所能承受的最大水压力(MPa)的10倍值。
材料抗渗性的大小,与其孔隙率和孔隙特征有关。材料中存在连通的孔隙,且孔隙率较大,水分容易渗入,故这种材料的抗渗性较差。孔隙率小的材料具有较好的抗渗性。封闭孔隙水分不能渗入,因此对于孔隙率虽然较大,但以封闭孔隙为主的材料,其抗渗性也较好。对于地下建筑、压力管道、水工构筑物等工程部位,因经常受到压力水的作用,要选择具有良好抗渗性的材料;作为防水材料,则要求其具有更高的抗渗性。
(五)抗冻性
材料在饱和水状态下,能经受多次冻融循环作用而不破坏,且强度也不显著降低的性质,称为抗冻性。材料的抗冻性用抗冻等级表示。抗冻等级是以规定的试件,采用标准试验方法,测得其强度降低不超过规定值,并无明显损害和剥落时所能经受的最大冻融循环次数来确定,以“Fn”表示,其中n为最大冻融循环次数。
材料经受冻融循环作用而破坏,主要是因为材料内部孔隙中的水结冰所致。水结冰时体积要增大,若材料内部孔隙充满了水,则结冰产生的膨胀会对孔隙壁产生很大的应力,当此应力超过材料的抗拉强度时,孔壁将产生局部开裂;随着冻融循环次数的增加,材料逐渐被破坏。
材料抗冻性的好坏,取决于材料的孔隙率、孔隙的特征、吸水饱和程度和自身的抗拉强度。材料的变形能力大,强度高,软化系数大,则抗冻性较高。一般认为,软化系数小于0.80的材料,其抗冻性较差。在寒冷地区及寒冷环境中的建筑物或构筑物,必须要考虑所选择材料的抗冻性。
五、材料与热有关的性质
为保证建筑物具有良好的室内小气候,降低建筑物的使用能耗,因此要求材料具有良好的热工性质。通常考虑的热工性质有导热性、热容量。
(一)导热性
当材料两侧存在温差时,热量将从温度高的一侧通过材料传递到温度低的一侧,材料这种传导热量的能力称为导热性。材料导热性的大小用导热系数表示。导热系数是指厚度为1m的材料,当两侧温差为1K时,在1s时间内通过1m2面积的热量。用公式表示如下:λ=Qd/(T2-T1)At
式中 λ——材料的导热系数,W/(m·K);Q——传递的热量,J;
7
α——材料的厚度,m;
A——材料的传热面积,m2; t——传热时间,s;
T2-T1——材料两侧的温差,K。
材料的导热性与孔隙率大小、孔隙特征等因素有关。孔隙率较大的材料,内部空气较多,由于密闭空气的导热系数很小〔λ=0.023W/(m·K)〕,其导热性较差。但如果孔隙粗大,空气会形成对流,材料的导热性反而会增大。材料受潮以后,水分进入孔隙,水的导热系数比空气的导热系数高很多〔λ=0.58W/(m·K)〕,从而使材料的导热性大大增加;材料若受冻,水结成冰,冰的导热系数是水导热系数的4倍,为λ=2.3W/(m·K),材料的导热性将进一步增加。
建筑物要求具有良好的保温隔热性能。保温隔热性和导热性都是指材料传递热量的能力,在工程中常把1/λ称为材料的热阻,用R表示。材料的导热系数越小,其热阻越大,则材料的导热性能越差,其保温隔热性能越好。
(二)热容量
材料容纳热量的能力称为热容量,其大小用比热表示。比热是指单位质量的材料,温度每升高或降低1K时所吸收或放出的热量。用公式表示如下:C=Q/m(T2
)
-T1
式中 c——材料的比热,J/(kg·K);
Q——材料吸收或放出的热量,J; m——材料的质量,kg;
T2-T1——材料加热或冷却前后的温差,K。
比热的大小直接反映出材料吸热或放热能力的大小。比热大的材料,能在热流变动或采暖设备供热不均匀时,缓和室内的温度波动。不同的材料其比热不同,即使是同种材料,由于物态不同,其比热也不同。
第二部分:混凝土与砂浆
(一)普通混凝土
普通混凝土normal concrete 一般指以水泥为主要胶凝材料,与水、砂、石子,必要时掺入化学外加剂和矿物掺合料,按适当比例配合,经过均匀搅拌、密实成型及养护硬化而成的人造石材。 混凝土主要划分为两个阶段与状态:凝结硬化前的塑性状态,即新拌混凝土或混凝土拌合物;硬化之后的坚硬状态,即硬化混凝土或混凝土。混凝土强度等级是以立方体抗压强度标准值划分,目前中国普通混凝土强度等级划分为14级:C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75及C80。 定义,特点和分类 定义
8
共分享92篇相关文档