云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 酒店(宾馆)管理系统--毕业论文+文献翻译

酒店(宾馆)管理系统--毕业论文+文献翻译

  • 62 次阅读
  • 3 次下载
  • 2025/5/3 10:01:16

河南科技大学本科毕业设计(论文)

(1).Subject-oriented: A data warehouse is organized around major subjects, such as customer, vendor, product, and sales. Rather than concentrating on the day-to-day operations and transaction processing of an organization, a data warehouse focuses on the modeling and analysis of data for decision makers. Hence, data warehouses typically provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

(2) Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources, such as relational databases, flat files, and on-line transaction records. Data cleaning and data integration techniques are applied to ensure consistency in naming conventions, encoding structures, attribute measures, and so on.

(3).Time-variant: Data are stored to provide information from a historical perspective (e.g., the past 5-10 years). Every key structure in the data warehouse contains, either implicitly or explicitly, an element of time.

(4)Nonvolatile: A data warehouse is always a physically separate store of data transformed from the application data found in the operational environment. Due to this separation, a data warehouse does not require transaction processing, recovery, and concurrency control mechanisms. It usually requires only two operations in data accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a physical implementation of a decision support data model and stores the information on which an enterprise needs to make strategic decisions. A data warehouse is also often viewed as an architecture, constructed by integrating data from multiple heterogeneous sources to support structured and/or ad hoc queries, analytical reporting, and decision making.

“OK\

37

河南科技大学本科毕业设计(论文)

Based on the above, we view data warehousing as the process of constructing and using data warehouses. The construction of a data warehouse requires data integration, data cleaning, and data consolidation. The utilization of a data warehouse often necessitates a collection of decision support technologies. This allows “knowledge workers\warehouse to quickly and conveniently obtain an overview of the data, and to make sound decisions based on information in the warehouse. Some authors use the term “data warehousing\to refer only to the process of data warehouse construction, while the term warehouse DBMS is used to refer to the management and utilization of data warehouses. We will not make this distinction here.

“How are organizations using the information from data warehouses?\ Many organizations are using this information to support business decision making activities, including:

(1) increasing customer focus, which includes the analysis of customer buying patterns (such as buying preference, buying time, budget cycles, and appetites for spending),

(2) repositioning products and managing product portfolios by comparing the performance of sales by quarter, by year, and by geographic regions, in order to fine-tune production strategies,

(3) analyzing operations and looking for sources of profit,

(4) managing the customer relationships, making environmental corrections, and managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database integration. Many organizations typically collect diverse kinds of data and maintain large databases from multiple, heterogeneous, autonomous, and distributed information sources. To integrate such data, and provide easy and efficient access to it is highly desirable, yet challenging. Much effort has been

38

河南科技大学本科毕业设计(论文)

spent in the database industry and research community towards achieving this goal.

The traditional database approach to heterogeneous database integration is to build wrappers and integrators (or mediators) on top of multiple, heterogeneous databases. A variety of data joiner and data blade products belong to this category. When a query is posed to a client site, a metadata dictionary is used to translate the query into queries appropriate for the individual heterogeneous sites involved. These queries are then mapped and sent to local query processors. The results returned from the different sites are integrated into a global answer set. This query-driven approach requires complex information filtering and integration processes, and competes for resources with processing at local sources. It is inefficient and potentially expensive for frequent queries, especially for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of heterogeneous database integration described above. Rather than using a query-driven approach, data warehousing employs an update-driven approach in which information from multiple, heterogeneous sources is integrated in advance and stored in a warehouse for direct querying and analysis. Unlike on-line transaction processing databases, data warehouses do not contain the most current information. However, a data warehouse brings high performance to the integrated heterogeneous database system since data are copied, preprocessed, integrated, annotated, summarized, and restructured into one semantic data store. Furthermore, query processing in data warehouses does not interfere with the processing at local sources. Moreover, data warehouses can store and integrate historical information and support complex multidimensional queries. As a result, data warehousing has become very popular in industry.

1. Differences between operational database systems and data warehouses

39

河南科技大学本科毕业设计(论文)

Since most people are familiar with commercial relational database systems, it is easy to understand what a data warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line transaction and query processing. These systems are called on-line transaction processing (OLTP) systems. They cover most of the day-to-day operations of an organization, such as, purchasing, inventory, manufacturing, banking, payroll, registration, and accounting. Data warehouse systems, on the other hand, serve users or “knowledge workers\Such systems can organize and present data in various formats in order to accommodate the diverse needs of the different users. These systems are known as on-line analytical processing (OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as follows.

(1).Users and system orientation: An OLTP system is customer-oriented and is used for transaction and query processing by clerks, clients, and information technology professionals. An OLAP system is market-oriented and is used for data analysis by knowledge workers, including managers, executives, and analysts.

(2). Data contents: An OLTP system manages current data that, typically, are too detailed to be easily used for decision making. An OLAP system manages large amounts of historical data, provides facilities for summarization and aggregation, and stores and manages information at different levels of granularity. These features make the data easier for use in informed decision making. (3). Database design: An OLTP system usually adopts an entity-relationship (ER) data model and an application -oriented database design. An OLAP system typically adopts either a star or snowflake model, and a subject-oriented database

40

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

河南科技大学本科毕业设计(论文) (1).Subject-oriented: A data warehouse is organized around major subjects, such as customer, vendor, product, and sales. Rather than concentrating on the day-to-day operations and transaction processing of an organization, a data warehouse focuses on the modeling and analysis of data for decision makers. Hence, data warehouses typically provide a simple and concise view

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com