当前位置:首页 > 高三第一轮复习9 - 机械振动和机械波 教案09
的整数倍
C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等 D.若△t=T,则在t时刻和(t-△t)时刻振子运动的加速度一定相同
解析:若△t=T/2或△t=nT-T/2,(n=1,2,3....),则在t 和(t+△t)两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻.振子的位移、回复力、加速度、速度等均大小相等,方向相反.但在这两时刻弹簧的长度并不一定相等(只有当振子在t和(t-△t)两时刻均在平衡位置时,弹簧长度才相等).反过来.若在t和(t-△t),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等.方向相反,则△t一定等于△t=T/2的奇数倍.即△t=(2n-1)T/2(n=1,2,3?).如果仅仅是振子的速度在t 和(t+△t),两时刻大小相等方向相反,那么不能得出△t=(2n一1)T/2,更不能得出△t=nT/2(n=1,2,3?).根据以上分析.A、C选项均错.
若t和(t+△t)时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则
△t=nT(n=1,2,,3?),但仅仅根据两时刻振子的位移相同,不能得出△t=nT.所以
B这项错.若△t=T,在t和(t+△t)两时刻,振子的位移、回复力、加速度、速度等均大 小相等方向相同,D选项正确。
2.单摆。
(1)单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。
(2)当单摆的摆角很小时(小于5°)时,单摆的周期T?2?l,与
g摆球质量m、振幅A都无关。其中l为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。
(3)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。
(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数??),再由频率公式可以得到:
n?f?12?g1 ?ll【例6】 已知单摆摆长为L,悬点正下方3L/4处有一个钉子。让摆球做小角度摆动,其周期将是多大?
解析:该摆在通过悬点的竖直线两边的运动都可以看作简谐运动,周期分别为
T1?2?l和l,因此该摆的周期为 :TT3?T2??T?1?2?g222gl
g【例7】 固定圆弧轨道弧AB所含度数小于5°,末端切线水平。两个相同的小球a、b分别从轨道的顶端和正中由静止开始下滑,比较它们到达轨道底端所用的时间和动能:ta__tb,Ea__2Eb。
解析:两小球的运动都可看作简谐运动的一部分,时间都等于四分之一周期,而周期与振幅无关,所以ta= tb;从图中可以看出b小球的下落高度小于a小球下落高度的一半,所以Ea>2Eb。
【例8】 将一个力电传感器接到计算机上,可以测量快速变化的力。用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。由此图线提供的信息做出下列判断:①t=0.2s时刻摆球正经过最低点;②t=1.1s时摆球正处于最高点;③摆球摆动过程中机械能时而增大时而减小;④摆球摆动的周期约是T=0.6s。上述判断中正确的是
A.①③ B.②④ C.①② D.③④
2.1 2.0 1.9 1.8 1.7 1.6 1.5 F/N t/s 1.4 0 0.4 0.8 1.2 1.6 2.0
解析:注意这是悬线上的拉力图象,而不是振动图象。当摆球到达最高点时,悬线上的拉力最小;当摆球到达最低点时,悬线上的拉力最大。因此①②正确。从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约是T=1.2s。因此答案③④错误。本题应选C。
三、简谐运动的图象
1.简谐运动的图象:以横轴表示时间t,以纵轴表示位移x,建立坐标系,画出的简谐运动的位移——时间图象都是正弦或余弦曲线.
2.振动图象的含义:振动图象表示了振动物体的位移随时间变化的规律. 3.图象的用途:从图象中可以知道:
(1)任一个时刻质点的位移 (2)振幅A. (3)周期T (4)速度方向:由图线随时间的延伸就可以直接看出
(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反.只要从振动图
象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了
点评:关于振动图象的讨论
(1)简谐运动的图象不是振动质点的轨迹.做简谐运动质点的轨迹是质点往复运动的那一段线段(如弹簧振子)或那一段圆弧(如下一节的单摆).这种往复运动的位移图象。就是以x轴上纵坐标的数值表示质点对平衡位置的位移。以t轴横坐标数值表示各个时刻,这样在x—t坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况——振动图象.
(2)简谐运动的周期性,体现在振动图象上是曲线的重复性. 简谐运动是一种复杂的非匀变速运动.但运动的特点具有简单的周期性、重复性、对称性.所以用图象研究要比用方程要直观、简便.简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小。正负表示速度的方向,正时沿x正向,负时沿x负向.
【例9】 劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻
A. 振子所受的弹力大小为0.5N,方向指向x轴的负方向
B.振子的速度方向指向x轴的正方向 C. 在0~4s内振子作了1.75次全振动
D。在0~4s内振子通过的路程为0.35cm,位移为0
解析:由图可知A在t轴上方,位移x=0.25cm,所以弹力F=-kx=-5N,即弹力大小为5N,方向指向x轴负方向,选项A不正确;由图可知过A点作图线的切线,该切线与x轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x轴的正方向,选项B正确. 由图可看出,t=0、t=4s时刻振子的位移都是最大,且都在t轴的上方,在0~4s内完成两次全振动,选项C错误.由于t=0时刻和t=4s时刻振子都在最大位移处,所以在0~4s内振子的位移为零,又由于振幅为0.5cm,在0~4s内振子完成了2次全振动,所以在这段时间内振子通过的路程为2×4×0.50cm=4cm,故选项D错误.
综上所述,该题的正确选项为B.
【例10】 摆长为L的单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至 t?3?2L时,摆球具有负向最大速度,则单摆的振动图象是图中的( ) g
解析:从t=0时经过t?3?233LT摆球具有负向最大时间,这段时间为T,经过
44g
速度,说明摆球在平衡位置,在给出的四个图象中,经过而具有负向最大速度的只有D。所以选项D正确。
四、受迫振动与共振 1.受迫振动
3T具有最大速度的有C、D两图,4物体在驱动力(既周期性外力)作用下的振动叫受迫振动。
⑴物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。
⑵物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。
2.共振
当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。 要求会用共振解释现象,知道什么情况下要利用共振,什么情况下要防止共振。 (1)利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千?? (2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢?? 【例11】 把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是
A.降低输入电压 B.提高输入电压 C.增加筛子质量 D.减小筛子质量
解析:筛子的固有频率为f固=4/3Hz,而当时的驱动力频率为f驱=88/60Hz,即f固< f驱。为了达到振幅增大,应该减小这两个频率差,所以应该增大固有频率或减小驱动力频率。本题应选AD。
共分享92篇相关文档