云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2019年浙江省中考数学真题分类汇编 专题07 函数之解答题(解析版)

2019年浙江省中考数学真题分类汇编 专题07 函数之解答题(解析版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/5 15:35:42

专题07 函数之解答题

参考答案与试题解析

一.解答题(共20小题)

1.(2019?台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)

之间具有函数关系h系如图2所示.

x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关

(1)求y关于x的函数解析式;

(2)请通过计算说明甲、乙两人谁先到达一楼地面.

【答案】解:(1)设y关于x的函数解析式是y=kx+b,

,解得,,

即y关于x的函数解析式是yx+6;

(2)当h=0时,0x+6,得x=20,

当y=0时,0∵20<30, ∴甲先到达地面.

x+6,得x=30,

【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.

2.(2019?绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.

(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.

(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.

【答案】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.

1千瓦时的电量汽车能行驶的路程为:

千米;

(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入, 得∴

∴y=﹣0.5x+110,

当x=180时,y=﹣0.5×180+110=20,

答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.

【点睛】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.

3.(2019?温州)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.

(1)求该旅行团中成人与少年分别是多少人?

(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?

②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少. 【答案】解:(1)设成人有x人,少年y人,

解得,

答:该旅行团中成人与少年分别是17人、5人; (2)①由题意可得,

由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),

答:由成人8人和少年5人带队,则所需门票的总费用是1320元; ②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5, 当10≤a≤17时,

若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5, ∴b的最大值是2,此时a+b=12,费用为1160元;

若a=11,则费用为100×11+100×b×0.8≤1200,得b∴b的最大值是1,此时a+b=12,费用为1180元;

若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去; 当1≤a<10时,

若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3, ∴b的最大值是3,a+b=12,费用为1200元;

若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5, ∴b的最大值是3,a+b=11<12,不合题意,舍去; 同理,当a<8时,a+b<12,不合题意,舍去;

综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.

【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.

4.(2019?宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示. (1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式. (2)求第一班车从入口处到达塔林所需的时间.

(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)

【答案】解:(1)由题意得,可设函数表达式为:y=kx+b(k≠0), 把(20,0),(38,2700)代入y=kx+b,得

,解得

∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x﹣3000(20≤x≤38);

(2)把y=1500代入y=150x﹣3000,解得x=30, 30﹣20=10(分),

∴第一班车从入口处到达塔林所需时间10分钟;

(3)设小聪坐上了第n班车,则 30﹣25+10(n﹣1)≥40,解得n≥4.5, ∴小聪坐上了第5班车,

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

专题07 函数之解答题 参考答案与试题解析 一.解答题(共20小题) 1.(2019?台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h系如图2所示. x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关(1)求y关于x的函数解析式; (2)请通过计算说明甲、乙两人谁先到达一楼地面. 【答案】解:(1)设y关于x的函数解析式是y=kx+b, ,解得,, 即y关于x的函数解析式是yx+6; (2)当h=0时,0x+6,得x=20,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com