当前位置:首页 > 铁磁流体
一个双原子分子的排斥体积(图中黑色的部分)
下面以理想气体状态方程为基础,推导范氏方程。若把气体视为由体积无限小、相互之间无作用力的分子组成,这种模型便是理想气体模型,与其相对应的状态方程是:
若抛弃前一个的假设,把组成气体的分子视为有一定大小的刚性球(其半径称为范德瓦耳斯半径),用b 表示这些“球”的体积,上面的方程便改写为:
在这里,每个分子的“占有体积”v 被所谓“排斥体积”v - b 代替,反映了分子在空间中不能重叠。若气体被压缩至体积接近分子体积之和(即分子间空隙v - b 趋向于0),那么其压强将趋于无穷大。
下一步,我们考虑原子对之间的引力。引力的存在会使分子的平均亥姆霍兹自由能下降,减少量正比于流体的密度。但压强的大小满足热力学关系
式中A* 为每个分子的亥姆霍兹自由能。由此得到,引力使压强减小的量正比于1/v2。记该比例常数为a,可得
这便是范氏方程。
[编辑] 与理想气体方程模拟结果的比较 [编辑] 低压状况 在气体压强不太高的情况下,以下事实成立: 排斥体积b 的影响相对V 而言极小,可以忽略;以二氧化碳(CO2)为例,在标准状况(0°C,1标准大气压)下,一摩尔CO2体积V 为 22414 cm3,而相应的b= 43 cm3,比V 小3个数量级;
? 分子间的距离足够大,a/V2 项完全可以视为0;譬如在一大气压下二氧化碳气
体的a/V2 值只有7‰。
?
所以此时理想气体方程是范氏方程(也是对实际气体行为的)的一个良好近似。
分别用理想气体方程和范德瓦耳斯方程模拟的二氧化碳气体70°C时的p-V等温线
[编辑] 中高压状况
随着气体压力的增加,范氏方程和理想气体方程结果的差别会变得十分明显(左图为CO2分别用理想气体方程和范德瓦耳斯方程模拟的p-V等温线,温度70°C):
在压强为5000~15000kPa(50~150标准大气压)的中压区,由于体积被“压小”导致分子间距靠近,分子间的引力(表现为a/V2 项)变得不可忽略。a/V2 项的存在使得气体的压强比不考虑分子间引力的理想气体模型估计结果要小(所以左图的中压区里红线比蓝线要低)。
? 在压强为15000kPa以上的高压区,体积的急剧压缩致使b 的影响不可忽略,于
是范氏方程中的体积项V-Nb(或比容项v-b)将比理想气体方程中的体积项要小(或者说:对应相同体积/比容值的压强项会升高)。这一效应导致在高压区范氏气体的状态线重新赶上并超过理想气体线(见左图的左上角)。
?
[编辑] 用范氏方程描述气体的液化 范氏方程适用于气体的液化过程。气体液化可能发生的最高温度称为临界温度,用TC表示: 当温度T>TC时,无论给气体施加多大的压强都无法将它液化;
? 当温度T 而下降; ? 用范德瓦耳斯方程模拟的二氧化碳气体不同温度下压缩过程的p-V等温线,在临界温度以下时能看见明显的液化过程 右图所示为用范氏方程模拟的CO2在不同温度下的p-V 等温线,从中可以明显看出范氏方程对液化过程的模拟(注意:若用理想气体状态方程作上述模拟,得到的只是一系列双曲线,因为在等温条件下理想气体状态方程就退化为玻意耳-马略特定律——pV=常数)。CO2气体的临界温度为TC=31°C = 304 K。 70°C 时的曲线(右图中蓝线)形状仍与玻意耳定律的结果(双曲线)类似,尽管位置要略低; ? 当温度下降到40°C,曲线(右图中右二的曲线)形状发生明显的变化,表现为 两个拐点的出现。但此时二氧化碳仍然以气态存在; ? 温度进一步降至临界温度31°C(图中红线),若此时气体受压至体积小于某定 值VC(随温度变化而变化),则气体将发生液化。图中V>VC 时曲线对应气态CO2的p,V 值,V ? 图中13°C 和 21°C 对应的曲线只有两拐点以外的部分是与物理实际相符的。 当气体被进一步压缩至比右拐点对应体积更小时,气体将进入液化区,在液化过程中实际气体的p-V线应是一段“平台”,而不是如图所示的“驼峰”型。但完全液化后,液态CO2的压强却仍能被图中曲线恰当地反映,此时曲线随体积的减小而剧烈上升,这一定程度上反映了液体的不可压缩性。另外,我们从图中能得到的另一个信息就是“液化平台”的长度随温度的下降而增加; ? 气体的临界状态参量VC、pC、TC和范德瓦耳斯常数a、b之间存在下列数学关系: 我们可以利用这些关系通过测出气体的TC和对应的pC来得到a 和b 的值(由于测量上的困难,一般不使用VC)。 [编辑] 其他热力学参量 下面,我们不再考虑v=V/N (N 为系统中的分子数),改为考虑总体体积V 。 状态方程并不能告诉我们系统的所有热力学参量。我们可以照搬上面推导范氏方程的思路,从理想气体的亥姆霍兹自由能表达式出发,推得下面的结论: 式中A 为亥姆霍兹自由能,是无量纲的定容热容,Φ是待定的熵常数。上述方程将A 用它的自然变量V 和T 表示[2],所以系统的所有热力学信息已全部知道。其力学状态方程就是前面导出的范氏方程 系统的熵(S )由下式决定 综合A 和S 的表达式,可由定义得到系统内能 其他热力学势和化学势也可用类似的方程给出,但任何势函数若要用压强P 表示都需要求解一个三阶多项式,使结果的形式变得很繁杂。所以,将焓和吉布斯自由能用它们相应的自然变量表示的结果都是复杂的(因为P 是它们的自然变量之一)。
共分享92篇相关文档