当前位置:首页 > 2014---2019年黑龙江省大庆市中考数学试题(含6年中考试题)
24.(7.00分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F. (1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.
25.(7.00分)某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元. (1)求购买1个排球、1个篮球的费用分别是多少元?
(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?
26.(8.00分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.
(1)求反比例函数y=的表达式; (2)求点B的坐标; (3)求△OAP的面积.
27.(9.00分)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB. (1)求证:AC平分∠FAB; (2)求证:BC2=CE?CP; (3)当AB=4
且
=时,求劣弧
的长度.
28.(9.00分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4). (1)求抛物线的解析式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值; (3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标; ②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.
2018年黑龙江省大庆市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分) 1.(3.00分)2cos60°=( ) A.1
B.
C.
D.
【分析】直接利用特殊角的三角函数值进而计算得出答案. 【解答】解:2cos60°=2×=1. 故选:A.
2.(3.00分)一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )
A.0.65×10﹣5 B.65×10﹣7
C.6.5×10﹣6
D.6.5×10﹣5
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:数字0.0000065用科学记数法表示为6.5×10﹣6. 故选:C.
3.(3.00分)已知两个有理数a,b,如果ab<0且a+b>0,那么( ) A.a>0,b>0 B.a<0,b>0 C.a、b同号
D.a、b异号,且正数的绝对值较大
【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.
【解答】解:∵ab<0, ∴a,b异号,
共分享92篇相关文档