当前位置:首页 > 统计学课后思考
6.1 什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?统计量:设X1,X2…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2…,Xn),不依赖于任何未知参数,则称函数T(X1,X2…,Xn)是一个统计量。 原因:为了使统计推断成为可能。
6.2 判断下列样本函数中哪些是统计量T1和T2是
6.3次序统计量:设简单随机样本(X1,X2, …,Xn)来自总体,从小到大排序为x(1),x(2), …,x(n), 则称X(1),X(2), …,X(n),为次序统计量。
6.4 充分统计量:统计量加工过程中一点信息都不损失的统计量为充分统计量 6.5 自由度:独立变量的个数
6.6简述 ?2分布、t分布、F分布及正态分布之间的关系:设
X~N(?,?)2Z?X???~N1)N((00,,1)F分布:设若U为服从自由度为n1的?2分布,即U~?2(n1),V为服从自由度为n2的?2分布,即V~?2(n2),且U和V相互独立,则
称F为服从自由度n1和n2的F分布,记为
Un1F?Vn2F~F(n1,n2)6.7 抽样分布:样本统计量的概率分布是一种理论概率分布随机变量是 样本统计量 6.8 中心极限定理的意义:设从均值为?,方差为? 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布。中心极限定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。
7.1估计量:用于估计总体参数的随机变量 估计值:估计参数时计算出来的统计量的具体值 7.2评价估计量好坏的标准:
无偏性:估计量抽样分布的数学期望等于被估计的总体参数
有效性:对同一总体参数的两个无偏点估计量 ,有更小标准差的估计量更有效 一致性:随着样本容量的增大,估计量的 值越来越接近被估计的总体参数 7.3 置信区间:由样本统计量所构造的总体参数的估计区间
7.4 解释95%的置信区间:95%的置信区间指用某种方法构造的所有区间中有95%的区间包含总体参数的真值。
7.5 含义:Za/2是标准正态分布上侧面积为a/2的z值,公式是统计总体均值时的边际误差。 7.6 独立样本:如果两个样本是从两个总体中独立抽取的,即一个样本中的元素与另一个样本中的元素相互独立。
匹配样本:一个样本中的数据与另一个样本中的数据相对应。
7.7在对两个总体均值之差的小样本估计中,对两个总体和样本都有哪些假定? (1)、两个总体都服从正态分布
(2)、两个随即样本独立地分别抽自两个总体
7.8 简述样本量与置信水平、总体方差、估计误差的关系。样本量越大置信水平越高,总体方差和边际误差越小
8.1假设检验和参数估计有什么相同点和不同点?
答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数μ在估计前是未知的。而在参数假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
8.2什么是假设检验中的显著性水平?统计显著是什么意思?
答:显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率和风险。统计显著等价拒绝H0,指求出的值落在小概率的区间上,一般是落在0.05或比0.05更小的显著水平上。 8.3什么是假设检验中的两类错误?
答:假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用β表示,所以也称β错误或取伪错误。 8.4两类错误之间存在什么样的数量关系?
答:在假设检验中,α与β是此消彼长的关系。如果减小α错误,就会增大犯β错误的机会,若减小β错误,也会增大犯α错误的机会。 8.5解释假设检验中的P值
答:P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。(它的大小取决于三个因素,一个是样本数据与原假设之间的差异,一个是样本量,再一个是被假设参数的总体分布。)
8.6显著性水平与P值有何区别
答:显著性水平是原假设为真时,拒绝原假设的概率,是一个概率值,被称为抽样分布的拒绝域,大小由研究者事先确定,一般为0.05。而P只是原假设为真时所得到的样本观察结果或更极端结果出现的概率,被称为观察到的(或实测的)显著性水平 8.7假设检验依据的基本原理是什么?
答:假设检验依据的基本原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的。根据这一原理,可以作出是否拒绝原假设的决定。 8.8你认为单侧检验中原假设与备择假设的方向如何确定?
答:将研究者想收集证据予以支持的假设作为备择假设H1,将研究者想收集证据证明其不正确的假设作为原假设H0,先确立备择假设H1,备择假设的方向与想要证明其正确性的方向一致,原假设与备择假设是互斥的,等号总在原假设上。(举例说明,如下:“一项研究表明,采用新技术生产后,将会使产品的使用寿命明显延长到1500小时以上。检验这一结论是否成立”,则备择假设的方向为“>”(寿命延长),建立的原假设与备择假设应为H0:μ≤1500,H1:μ>1500.又例,“一项研究表明,改进生产工艺后,会使产品的废品率降低到2%以下。检验这一结论是否成立”,则备择假设的方向为“<”(废品率降低),建立的原假设与备择假设应为H0: μ≥2% ,H1: μ< 2%.) 第10章思考题
10.1 什么是方差分析?它研究的是什么?
答:方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是
否有显著影响。它所研究的是分类型自变量对数值型因变量的影响。 10.2 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法? 答:做两两比较十分繁琐,进行检验的次数较多,会使得犯第I类错误的概率相应增
加,而且随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加。而方差分析方法是同时考虑所有的样本,因此排除了错误累积的概率,从而避免一个真实的原假设。
10.3 方差分析包括哪些类型?它们有何区别?
答:方差分析可分为单因素方差分析和双因素方差分析。区别:单因素方差分析研究
的是一个分类自变量对一个数值型因变量的影响,而双因素涉及两个分类型自变量。 10.4 方差分析中有哪些基本假定? 答:(1)每个总体都应服从正态分布 (2)各个总体的方差 (3)观测值是独立的 10.5 简述方差分析的基本思想
答:它是通过对数据误差来源的分析来判断不同总体的均值是否相等,进而分析自变量
对因变量是否有显著影响。 10.6 解释因子和处理的含义
答:在方差分析中,所要检验的对象称为因素或因子,因素的不同表现称为水平或处理。 10.7 解释组内误差和组间误差的含义
必须相同
答:组内平均值误差的误差(SSE)是指每个水平或组的各个样本数据与其组平均值误
差平方和,反映了每个样本个观测值的离散状况;组间误差(SSA)是指各组平均值与总平均值的误差平方和,反映了各样本均值之间的差异程度。 10.8 解释组内方差和组间方差的含义
答:组内方差指因素的同一个水平下样本数据的方差;组间方差指因素的不同水平下各
个样本之间的方差。 10.9 简述方差分析的基本步骤 答:(1)提出假设 (2)构造检验统计量 (3)统计决策
10.10 方差分析中多重比较的作用是什么?
答:通过对总体均值之间的配对比较来进一步检验哪些均值之间存在差异。
11.1.变量之间存在的互相依存的不确定的数量关系,称为相关关系。相关关系的特点: ⑴变量之间确实存在着数量上的依存关系;⑵变量之间数量上的关系是不确定、不严格的依存关系。
11.2.相关分析通过对两个变量之间的线性关系的描述与度量,主要解决的问题包括:⑴变量之间是否存在关系?⑵如果存在关系,它们之间是什么样的关系?⑶变量之间的关系强度如何?⑷样本所反映的变量之间的关系能否代表总体变量之间的关系?
11.3.在进行相关分析时,对总体主要有以下两个假定:⑴两个变量之间是线性关系;⑵两个变量都是随机变量。
11.4.相关系数的性质:⑴r的取值范围是[-1,1],r为正表示正相关,r为负表示负相关,r绝对值的大小表示相关程度的高低;⑵对称性:X与Y的相关系数rxy和Y与X之间的相关系数ryx相等;⑶相关系数与原点和尺度无关;⑷相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;⑸相关系数只是两个变量之间线性关联的一个度量,却不一定意味两个变量之间有因果关系;⑹若X与Y统计上独立,则它们之间的相关系数为零;但r=0不等于说两个变量是独立的。即零相关并不一定意味着独立性。
11.5为什么要对相关系数进行显著性检验?在实际的客观现象分析研究中,相关系数一般都是利用样本数据计算的,因而带有一定的随机性。样本容量越小,其可信程度就越差,抽取的样本不同,r的取值也会不同,因此r是一个随机变量。能否用样本相关系数来反映总体的相关程度,需要考察样本相关系数的可靠性,因此要进行显著性检验。
11.6相关系数显著性检验的步骤:⑴提出假设;⑵计算检验统计量t值;⑶在给定的显著性水平?和自由度,查t分布表中相应的临界值,作出决策。
11.7回归模型是对统计关系进行定量描述的一种数学模型,例如:对于具有线性关系的两个变量,可以有一元线性方程来描述它们之间的关系,描述因变量y如何依赖自变量x和误差项?的方程称为回归模型。
共分享92篇相关文档