云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 随机过程实验

随机过程实验

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 2:17:52

实验名称:随机变量的仿真与实验

实验内容:用MATLAB分别产生服从(二项分布、泊松分布、正态分布、均匀分布、指数分布、瑞利分布)的随机变量,并分析他们的: 1、分布函数或概率密度函数 2、均值、方差 1、服从二项分布的随机变量 理论分析

如果随机变量X的分布律为

kkn?kpk?P{X?k}?Cnpq

0

其期望和方差分别为E(X) = np,D(X)=npq。随机变量X~B(20,0.4),可以通过matlab计算其期望和方差,绘制分布律和分布函数。程序如下:

n = 20;p = 0.4;

[E,D] = binostat(n ,p); %计算期望和方差

f = binopdf(1:21, n, p); %计算分布律 F = binocdf(1:21, n, p); %计算分布函数 subplot(2,2,1); stem(f); %绘制分布律

title('二项分布理论分布律 n=20 p=0.4');xlabel('x');ylabel('p'); subplot(2,2,3); stem(F); %绘制分布函数

title('二项分布理论分布函数 n=20 p=0.4');xlabel('x');ylabel('f');

计算得结果E(X) = 8,D(X) = 4.800,分布律和分布函数如图1。

图1 X~B(20,0.4)的分布律和分布函数

样本分析

利用matlab中binornd函数产生一个X~B(20,0.4)的样本,样本点总数为20000。计算其均值和方差,计算分布律和分布函数,并与理论结果进行比较。程序如下:

n = 20; p = 0.4;

R = binornd(n,p,1,20000);

e = mean(R); %期望 d = var(R); %方差

f = zeros (1,21); F = zeros (1,21);

for j = 1:21 %计算统计分布律 for i=1:20000 if j == R(i)

f(1,j) = f(1,j) + 1; end end

f(1,j) = f(1,j) / 20000; end

subplot(2,2,1); stem(f);

title('二项分布样本分布律 n=20 p=0.4'); xlabel('x'); ylabel('p');

for j = 1:21 %计算分布函数 for i = 1:j

F(1, j) = F(1, j) + f(1,i); end end

subplot(2,2,3);stem(F);

title('二项分布样本分布函数 n=20 p=0.4');xlabel('x');ylabel('f');

计算结果为e=8.0218,d=4.7760,与理论值(E(X)=8,D(X)=4.8)基本接近。分布律和分布函数如图2。与理论值接近。

图2 X~B(20,0.4) 样本分布律和分布函数

2、服从泊松分布的随机变量 理论分析

如果随机变量X的分布律为

pk?P{X?k}??kk!e??

λ>0, k=0,1,2,…n,则称X服从参数为λ的泊松分布,记为X~P(λ)。其期望和方差分别为E(X) =λ,D(X)= λ。观察参数λ对其分布律和分布函数的影响,令lamuda1=10、lamuda2=20、lamuda3=40可以通过matlab计算其期望和方差,绘制分布律和分布函数。程序如下:

lamuda1 = 10;lamuda2 = 20;lamuda3 = 40; [E,D] = poisstat(lamuda1); %计算期望和方差

f1 = poisspdf(0:1:100, lamuda1); %计算分布律 F1 = poisscdf(0:1:100, lamuda1); %计算分布函数 f2 = poisspdf(0:1:100, lamuda2); %计算分布律 F2 = poisscdf(0:1:100, lamuda2); %计算分布函数 f3 = poisspdf(0:1:100, lamuda3); %计算分布律 F3 = poisscdf(0:1:100, lamuda3); %计算分布函数

%绘制分布律

subplot(2,2,1); plot(0:1:100,f1,0:1:100,f2, '--',0:1:100, f3, ':'); title('泊松分布理论分布律');xlabel('x');ylabel('f');

%绘制分布函数

subplot(2,2,3); plot(0:1:100,F1,0:1:100,F2, '--',0:1:100, F3, ':'); title('泊松分布理论分布函数');xlabel('x');ylabel('F');

计算得E=10,D=10。分布律和分布函数如图3。

图3 泊松分布的分布律和分布函数

样本分析

利用matlab中poissrnd函数分别产生lamuda1=10,lamuda2=20,lamuda3=40的样本,每个样本点总数为20000。计算其均值和方差,计算分布律和分布函数,并与理论结果进行比较。程序如下:

lamuda1 = 10;lamuda2 = 20;lamuda3 = 40;

R1 = poissrnd(lamuda1,1,20000); %三组随机数产生 R2 = poissrnd(lamuda2,1,20000); R3 = poissrnd(lamuda3,1,20000);

搜索更多关于: 随机过程实验 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

实验名称:随机变量的仿真与实验 实验内容:用MATLAB分别产生服从(二项分布、泊松分布、正态分布、均匀分布、指数分布、瑞利分布)的随机变量,并分析他们的: 1、分布函数或概率密度函数 2、均值、方差 1、服从二项分布的随机变量 理论分析 如果随机变量X的分布律为 kkn?kpk?P{X?k}?Cnpq 0

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com