云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 3:01:31

2. 试比较下列二重积分的大小: (1) (2)

23(x?y)dσ(x?y)dσ,其中D由x轴、y轴及直线x+y=1围成; 与????DD?ln(x?y)??dσ,其中D是以A(1,0),B(1,1),C(2,0)为顶点??ln(x?y)dσ与???D2D的三角形闭区域.

23解:(1)在D内,0?x?y?1,故?x?y???x?y?,??(x?y)2d????(x?y)3d?.

DD (2) 在D内,1?x?y?2,故0?ln(x?y)?1,从而ln(x?y)?ln2(x?y),

习题8-2

1. 画出积分区域,并计算下列二重积分:

(1) ??(x?y)dσ,其中D为矩形闭区域:x?1,y?1;

D??ln(x?y)d????[ln(x?y)]d?

DD2(2) (3) (4) (5) (6)

??(3x?2y)dσ,其中D是由两坐标轴及直线x+y=2所围成的闭区域;

D??(xD2?y2?x)dσ,其中D是由直线y=2,y=x,y=2x所围成的闭区域;

??xDD2ydσ,其中D是半圆形闭区域:x2+y2≤4,x≥0;

??xlnydσ,其中D为:0≤x≤4,1≤y≤e;

x2dσ其中D是由曲线xy?1,x?1,y?x所围成的闭区域. ??2y2D111D?1?1?1解:(1) ??(x?y)d???dx?(x?y)dy??2xdx?0. (2) ??(3x?2y)d???dx?D022?x0(3x?2y)dy??[3x(2?x)?(2?x)2]dx

0222202 ??[?2x2?2x?4]dx??x3?x2?4x?.

030319y332 (3) ??(x?y?x)d???dy?y(x?y?x)dx??(?y)dy

002482D222y222

19413213y?y?. 96806D (4) 因为被积函数是关于y的奇函数,且D关于x轴对称,所以??x2yd??0.

4e4ee4 (5) ??xlnyd???dx?xlnydy??x(ylny?lny)dx?e?1x2?2(e?1).

0102110D11122411x21x2xx3xxxdx??1(x?x)dx?(?)1?9. (6) ??2d???1dx?2dy???1xy2464y22y2Dx22. 将二重积分??f(x,y)dσ化为二次积分(两种次序)其中积分区域D分别如下:

D(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;

(2) 由直线y=x及抛物线y2=4x所围成的闭区域;

- 17 -

1(3) 由直线y=x,x=2及双曲线y?所围成的闭区域;

x(4) 由曲线y=x2及y=1所围成的闭区域.

解:(1) ?dx?f(x,y)dy??dx?0011x22?x0f(x,y)dy??dy?012?yyf(x,y)dx.

(2) ?dx?01242xx2f(x,y)dy??dy?10221y4yy2f(x,y)dx.

2x14(3) ?1dy?1f(x,y)dx??dy?f(x,y)dx??dx?1f(x,y)dy.

yx(4) ?dx?2f(x,y)dy??dy??1x0111y?yf(x,y)dx.

22y3. 交换下列二次积分的积分次序:

(1) ?dy?f(x,y)dx; (2)?dy?2f(x,y)dx;

000y1y (3) ?dx?110elnx0yf(x,y)dy; (4) ?dy?f(x,y)dx??dy?001110x12y33?y0f(x,y)dx.

解:(1) ?dy?f(x,y)dx??dx?f(x,y)dy.

0(2) ?dy?2f(x,y)dx??dx?xf(x,y)dy.

0y022y4x(3) ?dx?1elnx02yf(x,y)dy??dy?yf(x,y)dx

0e12e(4) ?dy?010f(x,y)dx??dy?133?y0f(x,y)dx??dx?x023?xf(x,y)dy.

24. 求由平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体体积.

11137解:V??dx?(6?2x?3y)dy??(6?2x?)dx?.

000225. 求由平面x=0,y=0,x+y=1所围成的柱体被平面z=0及曲面x2+y2=6-z截得的立体体积.

11?x1(1?x)334222解:V??dx?(6?x?y)dy??[6(1?x)?(1?x)x?)dx?.

000312

习题8-3

1. 画出积分区域,把二重积分??f(x,y)dσ化为极坐标系下的二次积分,其中积分区域D

D是:

(1) x2+y2≤a2 (a>0); (2) x2+y2≤2x;

(3) 1≤x2+y2≤4; (4) 0≤y≤1-x,0≤x≤1. 解:(1) (2) (3) (4)

??Df(x,y)d???d??f(rcos?,rsin?)rdr.

002?a??Df(x,y)d???2?d???2?2cos?0f(rcos?,rsin?)rdr.

??DDf(x,y)d???d??f(rcos?,rsin?)rdr.

012?2??f(x,y)d????a?20d??1cos??sin?0f(rcos?,rsin?)rdr.

2. 把下列积分化为极坐标形式,并计算积分值: (1)

0dy?a2?y20(x2?y2)dx;

a2?y222(2)

?20?10dx?2x2?y2dx;

xx解:(1)

?a0dy?0(x?y)dx??d??a0?a4?a4. rdr???3248 - 18 -

?sin?cos2?0(2)

?dx?01xx2x?ydx??d??40221sin3?rdr??4d? 30cos6?2?21?co?s14141 ???d(co?s?)?[d30cos6?3?0cos6??1cos?5?cos?3?42(2?1)?)?. ??(?353450??14(?co?s)d4?0cos???( cos)]3. 在极坐标系下计算下列二重积分:

22(1)??ex?ydσ,其中D是圆形闭区域: x2+y2≤1;

D(2) 区域;

(3)

??ln(1?xD2?y2)dσ,其中D是由圆周x2+y2=1及坐标轴所围成的在第一象限内的闭

??arctanxdσ,其中D是由圆周x+y=1,x+y=4及直线y=0,y=x所围成的在第一

Dy2222

象限内的闭区域;

(4)

??DR2?x2?y2dσ其中D由圆周x2+y2=Rx(R>0)所围成.

2解:(1) ??exD?y22?12121d???d??errdr?2??er??(e?1).

0020(2)

2??ln(1?x?y)d???2d??ln(1?r)rdr?D0022?1?[r2ln(1?r2)1?22r3dr]

0?01?r2121r(1?r)?r??(2ln2?1). ?[ln2?2?dr]?2401?r4??2222y?33?44(3) ??arctand???d??arctan(tan?)?rdr???d??rdr???.

0101x32264D(4)

??DR?x?ydσ???d??2?2222?Rcos?0?3122222Rcos?R?rrdr????(R?r)d? 2?2302231?R3332 ????(Rsin. ??Rd?)?3?23?4. 求由曲面z=x2+y2与z?x2?y2所围成的立体体积.

解:两条曲线的交线为x2+y2=1,因此,所围成的立体体积为:

V???[x2?y2?(x2?y2)]d???d??(r?r2)rdr?D002?1?.

6

习题8-4

1. 计算反常二重积分??e?(x?y)dxdy,其中D:x≥0,y≥x.

D2. 计算反常二重积分??Ddxdy,其中D:x2+y2≥1. 222(x?y)a0解:1.

?a0dx?e?x?ydy??(e?2x?e?x?a)dx??xa 所以??e?(x?y)dxdy?lim(?eDa????2a?12?e?2ae?2a?1?2a?e?e?a 21?e?a)?.

2 - 19 -

2?R1dxdy11112. 由?d??3dr?2?(?2),得??2?lim2?(?2)??. 2201rR???22R22R(x?y)D

复习题8

(A)

1. 将二重积分??f(x,y)dxdy化为二次积分(两种次序都要),其中积分区域D是:

D(1) ︱x︱≤1,︱y︱≤2;

(2) 由直线y=x及抛物线y2=4x所围成. 解:(1) ?1dx?2f(x,y)dy??2dy?1?1?2?2?1f(x,y)dx.

(2) ?42x4y0dx?xf(x,y)dy??0dy?y2f(x,y)dx.

42. 交换下列两次积分的次序: (1)?1y0dy?yf(x,y)dx;

(2)?2a0dx?2ax?x20f(x,y)dy;

(3)?10dx?x0f(x,y)dy+?2dx?2?x10f(x,y)dy.

解:(1) ?1?y?1x0dyyf(x,y)dx?0dx?x2f(x,y)dy.

(2) ?2a2ax?x2aa?a2?y20dx?0f(x,y)dy??0dy?a?a2?y2f(x,y)dx.

(3)

?1dx?xf(x,y)dy+?2dx?2?x010f(x,y)dy??1dy?2?y00yf(x,y)dx.

3. 计算下列二重积分:

(1) ??ex?ydσ, D: ︱x︱≤1,︱y︱≤1;

D(2) ??x2ydxdy,D由直线y?1,x?2及y?x围成;

D(3) ??(x?1)dxdy,D由y?x和y?x3

围成; D(4) ??(x2?y2)dxdy,D:︱x︱?︱y︱≤1;

D(5) ??1dσ,D由y2ysiny??2x与y?x围成; D(6)

??(4?x?y)dσ,D是圆域x2

+y2

≤R2

D解: (1) ??ex?yd???1dx?1ex?ydy??1(ex?1?x?1x?1x?111?1?1e)dx?(e?e)D??1?(e?1)2e.

(2)

??x2ydxdy?D?2xx2ydy?12?2421x5x32291dx?11(x?x)dx?2(5?3)1?15.

(3) ??(x?1)dxdy?D?10dx?xx?13(x?1)dy?0(x2?x?x4?x3)dx?13?12?15?14??760.

(4)

??(x2?y2)dxdy?411?xdy

D?0dx?0(x2?y2)?4?120(2x?x?4x312x3x2x41123?3)dx?4(3?2?3?3x)0?3.

- 20 -

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2. 试比较下列二重积分的大小: (1) (2) 23(x?y)dσ(x?y)dσ,其中D由x轴、y轴及直线x+y=1围成; 与????DD?ln(x?y)??dσ,其中D是以A(1,0),B(1,1),C(2,0)为顶点??ln(x?y)dσ与???D2D的三角形闭区域. 23解:(1)在D内,0?x?y?1,故?x?y???x?y?,??(x?y)2d????(x?y)3d?. DD (2) 在D内,1?x?y?2,故0?ln(x?y)?1,从而ln(x?y)?ln2(x?y), 习题8-2 1. 画出积分区域,并计算下列二重积分: (1) ??(x?y)dσ,其中D为矩形闭区域:x?1,y?1; D??ln(x?y)d????[ln(x?y)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com