当前位置:首页 > 高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案
2. 试比较下列二重积分的大小: (1) (2)
23(x?y)dσ(x?y)dσ,其中D由x轴、y轴及直线x+y=1围成; 与????DD?ln(x?y)??dσ,其中D是以A(1,0),B(1,1),C(2,0)为顶点??ln(x?y)dσ与???D2D的三角形闭区域.
23解:(1)在D内,0?x?y?1,故?x?y???x?y?,??(x?y)2d????(x?y)3d?.
DD (2) 在D内,1?x?y?2,故0?ln(x?y)?1,从而ln(x?y)?ln2(x?y),
习题8-2
1. 画出积分区域,并计算下列二重积分:
(1) ??(x?y)dσ,其中D为矩形闭区域:x?1,y?1;
D??ln(x?y)d????[ln(x?y)]d?
DD2(2) (3) (4) (5) (6)
??(3x?2y)dσ,其中D是由两坐标轴及直线x+y=2所围成的闭区域;
D??(xD2?y2?x)dσ,其中D是由直线y=2,y=x,y=2x所围成的闭区域;
??xDD2ydσ,其中D是半圆形闭区域:x2+y2≤4,x≥0;
??xlnydσ,其中D为:0≤x≤4,1≤y≤e;
x2dσ其中D是由曲线xy?1,x?1,y?x所围成的闭区域. ??2y2D111D?1?1?1解:(1) ??(x?y)d???dx?(x?y)dy??2xdx?0. (2) ??(3x?2y)d???dx?D022?x0(3x?2y)dy??[3x(2?x)?(2?x)2]dx
0222202 ??[?2x2?2x?4]dx??x3?x2?4x?.
030319y332 (3) ??(x?y?x)d???dy?y(x?y?x)dx??(?y)dy
002482D222y222
19413213y?y?. 96806D (4) 因为被积函数是关于y的奇函数,且D关于x轴对称,所以??x2yd??0.
4e4ee4 (5) ??xlnyd???dx?xlnydy??x(ylny?lny)dx?e?1x2?2(e?1).
0102110D11122411x21x2xx3xxxdx??1(x?x)dx?(?)1?9. (6) ??2d???1dx?2dy???1xy2464y22y2Dx22. 将二重积分??f(x,y)dσ化为二次积分(两种次序)其中积分区域D分别如下:
D(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;
(2) 由直线y=x及抛物线y2=4x所围成的闭区域;
- 17 -
1(3) 由直线y=x,x=2及双曲线y?所围成的闭区域;
x(4) 由曲线y=x2及y=1所围成的闭区域.
解:(1) ?dx?f(x,y)dy??dx?0011x22?x0f(x,y)dy??dy?012?yyf(x,y)dx.
(2) ?dx?01242xx2f(x,y)dy??dy?10221y4yy2f(x,y)dx.
2x14(3) ?1dy?1f(x,y)dx??dy?f(x,y)dx??dx?1f(x,y)dy.
yx(4) ?dx?2f(x,y)dy??dy??1x0111y?yf(x,y)dx.
22y3. 交换下列二次积分的积分次序:
(1) ?dy?f(x,y)dx; (2)?dy?2f(x,y)dx;
000y1y (3) ?dx?110elnx0yf(x,y)dy; (4) ?dy?f(x,y)dx??dy?001110x12y33?y0f(x,y)dx.
解:(1) ?dy?f(x,y)dx??dx?f(x,y)dy.
0(2) ?dy?2f(x,y)dx??dx?xf(x,y)dy.
0y022y4x(3) ?dx?1elnx02yf(x,y)dy??dy?yf(x,y)dx
0e12e(4) ?dy?010f(x,y)dx??dy?133?y0f(x,y)dx??dx?x023?xf(x,y)dy.
24. 求由平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体体积.
11137解:V??dx?(6?2x?3y)dy??(6?2x?)dx?.
000225. 求由平面x=0,y=0,x+y=1所围成的柱体被平面z=0及曲面x2+y2=6-z截得的立体体积.
11?x1(1?x)334222解:V??dx?(6?x?y)dy??[6(1?x)?(1?x)x?)dx?.
000312
习题8-3
1. 画出积分区域,把二重积分??f(x,y)dσ化为极坐标系下的二次积分,其中积分区域D
D是:
(1) x2+y2≤a2 (a>0); (2) x2+y2≤2x;
(3) 1≤x2+y2≤4; (4) 0≤y≤1-x,0≤x≤1. 解:(1) (2) (3) (4)
??Df(x,y)d???d??f(rcos?,rsin?)rdr.
002?a??Df(x,y)d???2?d???2?2cos?0f(rcos?,rsin?)rdr.
??DDf(x,y)d???d??f(rcos?,rsin?)rdr.
012?2??f(x,y)d????a?20d??1cos??sin?0f(rcos?,rsin?)rdr.
2. 把下列积分化为极坐标形式,并计算积分值: (1)
0dy?a2?y20(x2?y2)dx;
a2?y222(2)
?20?10dx?2x2?y2dx;
xx解:(1)
?a0dy?0(x?y)dx??d??a0?a4?a4. rdr???3248 - 18 -
?sin?cos2?0(2)
?dx?01xx2x?ydx??d??40221sin3?rdr??4d? 30cos6?2?21?co?s14141 ???d(co?s?)?[d30cos6?3?0cos6??1cos?5?cos?3?42(2?1)?)?. ??(?353450??14(?co?s)d4?0cos???( cos)]3. 在极坐标系下计算下列二重积分:
22(1)??ex?ydσ,其中D是圆形闭区域: x2+y2≤1;
D(2) 区域;
(3)
??ln(1?xD2?y2)dσ,其中D是由圆周x2+y2=1及坐标轴所围成的在第一象限内的闭
??arctanxdσ,其中D是由圆周x+y=1,x+y=4及直线y=0,y=x所围成的在第一
Dy2222
象限内的闭区域;
(4)
??DR2?x2?y2dσ其中D由圆周x2+y2=Rx(R>0)所围成.
2解:(1) ??exD?y22?12121d???d??errdr?2??er??(e?1).
0020(2)
2??ln(1?x?y)d???2d??ln(1?r)rdr?D0022?1?[r2ln(1?r2)1?22r3dr]
0?01?r2121r(1?r)?r??(2ln2?1). ?[ln2?2?dr]?2401?r4??2222y?33?44(3) ??arctand???d??arctan(tan?)?rdr???d??rdr???.
0101x32264D(4)
??DR?x?ydσ???d??2?2222?Rcos?0?3122222Rcos?R?rrdr????(R?r)d? 2?2302231?R3332 ????(Rsin. ??Rd?)?3?23?4. 求由曲面z=x2+y2与z?x2?y2所围成的立体体积.
解:两条曲线的交线为x2+y2=1,因此,所围成的立体体积为:
V???[x2?y2?(x2?y2)]d???d??(r?r2)rdr?D002?1?.
6
习题8-4
1. 计算反常二重积分??e?(x?y)dxdy,其中D:x≥0,y≥x.
D2. 计算反常二重积分??Ddxdy,其中D:x2+y2≥1. 222(x?y)a0解:1.
?a0dx?e?x?ydy??(e?2x?e?x?a)dx??xa 所以??e?(x?y)dxdy?lim(?eDa????2a?12?e?2ae?2a?1?2a?e?e?a 21?e?a)?.
2 - 19 -
2?R1dxdy11112. 由?d??3dr?2?(?2),得??2?lim2?(?2)??. 2201rR???22R22R(x?y)D
复习题8
(A)
1. 将二重积分??f(x,y)dxdy化为二次积分(两种次序都要),其中积分区域D是:
D(1) ︱x︱≤1,︱y︱≤2;
(2) 由直线y=x及抛物线y2=4x所围成. 解:(1) ?1dx?2f(x,y)dy??2dy?1?1?2?2?1f(x,y)dx.
(2) ?42x4y0dx?xf(x,y)dy??0dy?y2f(x,y)dx.
42. 交换下列两次积分的次序: (1)?1y0dy?yf(x,y)dx;
(2)?2a0dx?2ax?x20f(x,y)dy;
(3)?10dx?x0f(x,y)dy+?2dx?2?x10f(x,y)dy.
解:(1) ?1?y?1x0dyyf(x,y)dx?0dx?x2f(x,y)dy.
(2) ?2a2ax?x2aa?a2?y20dx?0f(x,y)dy??0dy?a?a2?y2f(x,y)dx.
(3)
?1dx?xf(x,y)dy+?2dx?2?x010f(x,y)dy??1dy?2?y00yf(x,y)dx.
3. 计算下列二重积分:
(1) ??ex?ydσ, D: ︱x︱≤1,︱y︱≤1;
D(2) ??x2ydxdy,D由直线y?1,x?2及y?x围成;
D(3) ??(x?1)dxdy,D由y?x和y?x3
围成; D(4) ??(x2?y2)dxdy,D:︱x︱?︱y︱≤1;
D(5) ??1dσ,D由y2ysiny??2x与y?x围成; D(6)
??(4?x?y)dσ,D是圆域x2
+y2
≤R2
;
D解: (1) ??ex?yd???1dx?1ex?ydy??1(ex?1?x?1x?1x?111?1?1e)dx?(e?e)D??1?(e?1)2e.
(2)
??x2ydxdy?D?2xx2ydy?12?2421x5x32291dx?11(x?x)dx?2(5?3)1?15.
(3) ??(x?1)dxdy?D?10dx?xx?13(x?1)dy?0(x2?x?x4?x3)dx?13?12?15?14??760.
(4)
??(x2?y2)dxdy?411?xdy
D?0dx?0(x2?y2)?4?120(2x?x?4x312x3x2x41123?3)dx?4(3?2?3?3x)0?3.
- 20 -
共分享92篇相关文档