云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2014年12月22日平面向量数量积的坐标表示

2014年12月22日平面向量数量积的坐标表示

  • 62 次阅读
  • 3 次下载
  • 2026/1/27 8:38:00

得2x+3>0且x﹣2×3≠0,从而可求 解答: 解:且向量不能共线 2x+3>0且x﹣2×3≠0 且x≠6 故答案为:{x|x} 点评: 本题主要考查了由向量的夹角的范围确定向量的坐标的范围,此类问题的容易出错的点是漏掉 25

“向量不能共线”的限制.

10.(2011?黄冈模拟)不共线的三个平面向量

= 2 .

考点: 平面向量数量积的坐标表示、模、夹角.菁优网权版所 有专题: 计算题. 分析: 由题意,由于三个平面向量两两所成的角相等可得任意两向量的夹角是120°,由于三个向量的模已知,可采取平方的方法求三个向量的和向量的 两两所成的角相等,且,则

26

模 解答: 解:由题意三个平面向量两两所成的角相等,可得任意两向量的夹角是120° 又∴=====2 故答案为2 点评: 本题考查求平面向量的模,解题的关键是理解模的定义及向 27

量数量积的运算律,本题的难点是用平方法求和与差的向量的模,平方法是求向量的模的常用方法

11.(2010?镇江模拟)设向量与的夹角为θ, 考点: 平面向量数量积的坐标表示、模、夹角.菁优网权版所 有专题: 计算题. 分析: 根据题意,易得的坐标,进而由向量模的计算可得、的模,再根据向量的数量积的 28

sinθ= .,,则

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

得2x+3>0且x﹣2×3≠0,从而可求 解答: 解:且向量不能共线 2x+3>0且x﹣2×3≠0 且x≠6 故答案为:{x|x} 点评: 本题主要考查了由向量的夹角的范围确定向量的坐标的范围,此类问题的容易出错的点是漏掉 25 “向量不能共线”的限制. 10.(2011?黄冈模拟)不共线的三个平面向量= 2 . 考点: 平面向量数量积的坐标表示、模、夹角.菁优网权版所 有专题: 计算题. 分析: 由题意,由于三个平面向量两两所成的角相等可得任意两向量的夹角是120°,由于三个向量的模已知,可采取平方的方法求三个向量的和向量的 两两所成的角相等,且,则26 模 解答: 解:由题意三个平面向量两两所成的角相等,可得任意两向量的夹角是120° 又∴

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com