当前位置:首页 > (高二下数学期末18份合集)四川省成都市高二下学期数学期末试卷合集
答案 文科数学试卷
参考答案
题号 1 答案 D 13.??2 A 3 B 4 B 5 D 6 B 7 C 8 A 9 B 10 D 11 A 12 C 3?3???6k?,??6k??4?4??k?z? 14.y??2x?1 15.?11 16. 8 102?91373?217.(1)原式?()2?1?()3?()482 2?3?32?133?()2?1?()3?()?2222
?
333?1?()?2?()?2222 12
?
∵角终边上一点P(-4,3)tan?(2)
?y3?? x4cos(??)sin(????)3?sin??sin?2?tan???. ∴?11?9?4cos(??)sin(??)?sin??cos?2218.(Ⅰ)因为btanA?2asinB,所以sinBtanA?2sinAsinB, 因为sinAsinB?0,所以cosA?因为A??0,π?,所以A??1, 2π. 3(Ⅱ)由余弦定理a2?b2?c2?2bccosA,a?7,得7?b2?c2?bc, 因为c?2b?4,所以7?b2??2b?4??b?2b?4?,解得b?1,或b?3. 又因为b?2?2c?2,所以b?3,c?2, 213bcsinA?3. 22所以△ABC的面积S?19.解:(Ⅰ)
???f?x?的定义域为?xx??k?,k?Z?.
2????????f?x??4tanxcosxcos?x???3?4sinxcos?x???3
3?3????1?32=4sinx?cosx?sinx?3?2sinxcosx?23sinx?3 ??2?2??=sin2x?3?1-cos2x??3?sin2x?3cos2x=2sin?2x??所以,
?3.
f?x?的最小正周期T?2???. 2????解:令z?2x?由??????,函数y?2sinz的单调递增区间是???2k?,?2k??,k?Z.
23?2??2?2k??2x??3??2?2k?,得??12?k??x?5??k?,k?Z. 12 设A???5??????????,易知AB??,?. ?,,B?x??k??x??k?,k?Z?????441212?124?????所以, 当x???????????????,?时,f?x? 在区间??,?上单调递增, 在区间??,??上单调递减. ?44??124??412?20.解:(Ⅰ)由题得该连锁分店一年的利润L(万元)与售价x的 函数关系式为L(x)=(x﹣4﹣a)(10﹣x)2,x∈.
(Ⅱ)求函数的导数L'(x)=(10﹣x)﹣2(x﹣4﹣a)(10﹣x)=(10﹣x)(18+2a﹣3x), 令L′(x)=0,得∵1≤a≤3, ∴①当
. ,即
时, 或x=10,
2
∴x∈时,L'(x)≤0,L(x)在x∈上单调递减, 故L(x)max=L(7)=27﹣9a. ②当∴
,即
时,
时,L′(x)>0; 时,L'(x)<0,
∴L(x)在故答:当
上单调递增;在
.
上单调递减,
每件商品的售价为7元时,该连锁分店一年的利润L最大,最大值为27﹣9a万元;
当每件商品的售价为元时,该连锁分店一年的利润L最大,最大值为万元.
21.21.解法一:(Ⅰ)f??x??mex?1,
①当m…0时,f??x??0,f?x?在???,???上为增函数.
?1?②当m?0时,令f??x??0,得x?ln???.
?m???1??1??若f??x??0,则x?ln???,f?x?在???,ln????上为增函数;
?m??m?????1???1?若f??x??0,则x?ln???,f?x?在?ln???,???上为减函数.
?m???m??(Ⅱ)①当m…0时,由(Ⅰ)知,f?x?为增函数,所以f?x?至多只有一个零点. ②当m??1时,0??1?1??1,由(Ⅰ)知,f?x?max?ln????0, m?m?所以f?x??0在R上恒成立,f?x?至多只有一个零点. ③当?1?m?0时,?1m??1???1??1,则f??1???0,f?ln?????ln????0, me?m???m???x2?令t?x??e??1?x??,则t??x??ex??1?x?,
2??x由(Ⅰ)知,当m??1时,f?x???ex??1?x?在???,0?为增函数,在?0,???为减函数,所以f?x??f?0??0,即ex…1?x,所以t??x?…0,t?x?为增函数.
?x2x2?所以当x?0时,t?x??t?0??0,即e?1?x?,所以f?x??m?1?x???1?x,
22??x22?2??所以f????m?1??2?m??mm因为f?x?在???,ln??2??1??m?1?0, ?m?????1???1??fx上为增函数;在ln?,???????上为减函数, ????m????m??所以f?x?有且只有两个零点. 综上所述,?1?m?0,x1???1,ln??????1?2??1????,x2??ln???,??. ?m????m?m?2??又因为f?0??m?1?0,所以x1???1,0?,x2??0,??
m??依题意,f?x1??mex1?x1?1?0,f?x2??mex2?x2?1?0,所以?m?令g?x??x1?1x2?1?x2. exe1??x?1?x?1x?gx?gx,则,, gx?????????12exexex当x?0时,g??x??0,g?x?为减函数. 要证x1?x2?0,即证x2??x1?0,
只需证g?x2??g??x1?,只需证g?x1??g??x1?. 令h?x??g?x??g??x?,即h?x??x?1??x?1?ex, xex?e2x?1?xx所以h??x???x?xe?,
eex当?1?x?0时,e2x?1,h??x??0,h?x?为增函数, 所以h?x1??h?0??0,故g?x1??g??x1?,故x1?x2?0. 解法二:(Ⅰ)同解法一.
(Ⅱ)因为f?x?有两个零点,所以方程mex?x?1?0,即?m?令g?x??x?1有两解. ex1??x?1?x?1x?,则, gx?????exexex当g??x??0时,x?0,g?x?为增函数;当g??x??0时,x?0,g?x?为减函数. 所以g?x??g?0??1.
又因为当x??1时,g?x??0;当x??1时,g?x??0, 所以0??m?1,且x1???1,0?,x2??0,???.
要证x1?x2?0,即证x2??x1?0,只需证g?x2??g??x1?, 因为?m?g?x1??g?x2?, 所以只需证g?x1??g??x1?,即证
x1?1?x1?1??x1, ex1e只需证?x1?1?e?x1??x1?1?ex1?0,x1???1,0?. 令h?x???x?1?e?x??x?1?ex,则
?1??0?1?xx?xx?由?e???x??x??e?x,得h??x???xe?xe??x?e?e?,
e?e??x当x???1,0?时,e?x?1?ex,故h??x??0,h?x?为增函数, 所以h?x1??h?0??0,故x1?x2?0. 22.(Ⅰ)C1的参数方程为??x?3cos?,(?为参数),
y?sin??2C2的直角坐标方程为x2?y2?8y?15?0,即x2??y?4??1.
(Ⅱ)由(Ⅰ)知,C2的图象是以C2?0,4?为圆心,1为半径的圆. 设P?3cos?,sin??,则
PC2??3cos??2??sin??4? 2?9?1?sin2????sin2??8sin??16?
1????8?sin????27.
2??当sin???21时,PC2取得最大值27?33. 2又因为PQ?PC2?1,当且仅当P,Q,C2三点共线,且C2在线段PQ上时,等号成立. 所以PQmax?33?1.
共分享92篇相关文档