当前位置:首页 > 【2020年数学高考】福建省福州市2020届高三上学期期末考试 数学(理).doc
理综押题【绝密】
因为h?0??1,h?1??e,
故当x??0,1?时,h?x??h?0??1 所以x?1?lnx??1?x?x3ex,x??0,1?, 即f?x?ex?x2?1?1,x??0,1?. x??解法二:(1)同解法一. (2)若a?0且x??0,1?, 1?1,
ex1?lnx12只需证?x??1, xex欲证
f?x?x?x2?即证x?1?lnx??1?x?x3ex.
设函数g?x??x?1?lnx??x??0,1??,则g??x???lnx. 当x??0,1?时,g??x??0 .故函数g?x?在?0,1?上单调递增.
??g(x)?g?1??1. 所以 设函数h?x??1?x?x3ex,x??0,1?,
因为x??0,1?,所以x?x3,所以1?x?x3?1, 又1?ex?e,所以h?x??1, 所以g(x)?1?h?x?, 即原不等式成立.
??解法三:(1)同解法一. (2)若a?0且x??0,1?, 1?1,
exx1?lnx12只需证?x??1,
exx欲证
f?x??x2?·13·
理综押题【绝密】
由于1?lnx?0,ex?e0?1,则只需证明1?lnx?x2?1?1, x11只需证明lnx?x2? 0?,令g?x??lnx?x2? ?x??0,1??,
xx11x?1?2x3x?1则g??x???2x?2??2?0,
xxx2x则函数g?x?在?0,1?上单调递减,则g?x??g?1??0, 所以lnx?x2?1?0成立, x即原不等式成立.
???22.解:(1)因为直线l的极坐标方程为?cos?????2,即?cos???sin??2,
4??所以直线l的直角坐标方程为x?y?2; ?x?tcos?,因为?(?参数,t?0)
y?sin??x2所以曲线C的普通方程为2?y2?1,
t?x?y?2,?222x由?x2消去得,1?ty?4y?4?t?0, 2?y?1,?2?t??所以??16?41?t24?t2?0, 解得 0?t?3,
故t的取值范围为0,3.
(2)由(1)知直线l的直角坐标方程为x?y?2?0, 故曲线C上的点?tcos?,sin??到l的距离d?t2?1?22tcos??sin??22??????,
故d的最大值为
由题设得t2?1?22?16?2, 2解得t??2. ·14·
理综押题【绝密】
又因为t?0,所以t?2. 23.解:(1)因为f?x??3?f?x?1?,所以x?1?3?x?2,
?x?1?x?2?3,
?x?1,?1?x?2,?x?2,??或?或?
3?2x?3,1?3,2x?3?3???解得0?x?1或1?x?2或2?x?3, 所以0?x?3,
故不等式f?x??3?f?x?1?的解集为?0,3?.
?3?(2)因为?1,??M,
?2??3?所以当x??1,?时,f?x??f?x?1??x?a恒成立,
?2?而f?x??f?x?1??x?a?x?1?x?x?a?0?x?a?x?x?1, ?3?因为x??1,?,所以x?a?1,即x?1?a?x?1,
?2??3?由题意,知x?1?a?x?1对于x??1,?恒成立,
?2?所以
1?1??a?2,故实数a的取值范围?,2?. 2?2? ·15·
共分享92篇相关文档