当前位置:首页 > 【2020年数学高考】福建省福州市2020届高三上学期期末考试 数学(理).doc
理综押题【绝密】
所以AD???4,0,2?,AE??5,3,?2, 设平面ADE的法向量为n??x,y,z?, ??AD?n?0则?,
AE?n?0?????4x?2z?0所以?,
?5x?3y?2z?0????取x?1,则n?1,33,2,
又因为平面ABD的一个法向量为m??0,1,0?, 所以cosn,m?331?1?33??436, 8????2所以二面角E?AD?B的余弦值为36. 820.解:解法一:(1)依题意得a?2,b?3,所c?a2?b2?1, 所以C的右焦点F坐标为?1,0?, 设C上的任意一点M的坐标为?xM,yM?, xM2yM2则??1,
433222所以MF??xM?1??yM2??xM?1??3?xM2
4?1212xM?2xM?4??xM?4?, 442又因为?2?xM?2,所以1?MF?9, 所以1?MF?3,
所以MF的取值范围为?1,3?.
(2)设P、M、N三点坐标分别为?xP,yP?,?xM,yM?,?xN,yN?,
设直线PM、PN斜率分别为k1、k2,则直线PM方程为y?yP?k1?x?xP?,
·9·
理综押题【绝密】
?x2y2?1,??由方程组?4消去y,得 3?y?y?k?x?x?P1P??3?4k?x212?8k1?k1xP?yP?x?4k12xP2?8k1xPyP?4yP2?12?0,
8k1?k1xP?yP?3?4k21由根与系数关系可得xM?xP?8k1?k1xP?yP?3?4k12,
故xM?4k12xP?8k1yP?3xP?xP?,
3?4k12同理可得xN?xP?3又k1?k2??,
48k2?k2xP?yP?3?4k22,
?3??3?8??xP?yP????8k?kx?y?4k1??4k1??6xP?8k1yP, 故xN?xP?22P2P??24k12?33?4k2?3?3?4????4k1?4k12xP?8k1yP?3xP6xP?8k1yP??xM, 则xN??xP??3?4k124k12?3从而xN?xM?0.
即M、N两点的横坐标之和为常数.
解法二:(1)依题意得a?2,b?3,所c?a2?b2?1, 所以C的右焦点F坐标为?1,0?, 设C上的任意一点M的坐标为?xM,yM?, 设C上的任意一点M的坐标为2cos?,3sin?, 则MF??2cos??1??22??2?3sin??2??cos??2?,
2又因为?1?cos??1,所以1?MF?9,
·10·
理综押题【绝密】
所以1?MF?3,
所以MF的取值范围为?1,3?.
(2)设P、M两点坐标分别为?xP,yP?,?xM,yM?,线段PM、PN的中点分别为E、F,点E的坐标为
?xE,yE?,直线PM、PN、OE的斜率分别为k1、k2、k3,
?xP2yP2??1,?yP2?yM23?43??由方程组?2得, 222x?x4xyPM?M?M?1,?3?4y?yMyP?yM3所以P???,
xP?xMxP?xM4所以
yP?yM2yE3???,
xP?xM2xE43所以k1?k3??,
43又因为k1?k2??,
4所以k2?k3, 所以PN//OE,
所以MN的中点在OE上, 同理可证:MN的中点在OF上, 所以点O为线段MN的中点. 根据椭圆的对称性,
所以M、N两点的横坐标之和为常数.
21.解:解法一:(1)函数f?x?的定义域为?0,???, 12a2x2?ax?1?2ax?1??ax?1?2, f??x????2ax?a??xxx①若a?0时,则f??x??0,f?x?在?0,???上单调递减; ②若a?0时,当x?当x?1时,f??x??0; a1时,f??x??0; a·11·
理综押题【绝密】
当 x?
1
时,f??x??0. a
?1??1?故在?0,?上,f?x?单调递减;在?,???上,f?x?单调递増;
?a??a?1③若a?0时,当x??时,f??x??0;
2a11时,f??x??0;当x??时,f??x??0. 2a2a1???1?故在?0,??上,f?x?单调递减;在??,???上,f?x?单调递増.
2a???2a?当x??(2)若a?0且x??0,1?, 1?1,
ex1?lnx12只需证?x??1,
exx欲证
f?x?x?x2?即证x?1?lnx??1?x?x3ex.
设函数g?x??x?1?lnx??x??0,1??,则g??x???lnx. 当x??0,1?时,g??x??0 .故函数g?x?在?0,1?上单调递增.
??g(x)?g?1??1. 所以 设函数h(x)?1?x?x3ex,则h?(x)?2?x?3x2?x3ex. 设函数p(x)?2?x?3x2?x3,则p??x??1?6x?3x2. 当x??0,1?时,p??0??p??1???8?0, 故存在x0??0,1?,使得p??x0??0,
从而函数p?x?在?0,x0?上单调递增;在?x0,1?上单调递减.
当x??0,x0?时,p?x0??p?0??2,当x??x0,1?时,p?x0??p?1???4?0 故存在x1??0,1?,使得h??x1??0,
即当x??0,x1?时,p?x??0,当x??x1,1?时,p?x??0 从而函数h?x?在?0,x1?上单调递增;在?x1,1?上单调递减.
·12·
????
共分享92篇相关文档