当前位置:首页 > 医学仪器原理结课报告 - 图文
医学仪器原理结课报告
--生物电信号记录仪
成员:
本报告分为四个部分,第一部分详述了心电电位及其波形特征、脑电及其它生物电位及其波形特征;第二部分则分别介绍了六种导联:心电导联:标准导联、监护导联、简化导联、心电向量图导联、脑电导联,最后介绍了电极放置法和导联接法;第三部分详细介绍了心电图机,分为电极与导联线、几种常用的心电图机、心电图机的基本框图与工作原理、心电图机技术指标这四个模块;第四部分则是重点突出介绍了其它生物电放大器中的脑电图机、脑电地形图机、肌电图机,各自的原理结构、技术指标均进行了详细的叙述。
一、 生物电信号
生物电现象是生命活动的基本特征之一,各种生物均有电活动的表现,大到 鲸鱼,小到细菌,都有或强或弱的生物电。其实,英文细胞(cell)一词也有电池的含义,无数的细胞就相当于一节节微型的小电池,是生物电的源泉。该部分内容介绍的心电、脑电、肌电、眼电信号的基本概念、产生原理以及波形特征。
1.生物电信号:
目前已知生物信号可分为两大类:化学信号和电信号,这两种信号既不同又相互密切联系。 生物电信号主要有静息电位,动作电位和局部电位,其本质是离子的跨膜流动而不是电子的流动。
静息电位:神经细胞在不活动时,细胞膜处于极化状态,如果以膜外电位为零,则膜内电位约为-50~-70mv,称为静息膜电位。
动作电位:当给于细胞一个足够大的去极化剌激时,即可记录到一个持续1~2ms的沿轴突波形传导的峰形电位,称为动作电位。动作电位包括一个上升相和一个下降相,上升相通常包括两个部份,由-60至-35时上升较缓慢(可用去极化速率v/s表示),此后上升速率骤增,这一转换点称为阈电位(约-35mv)。
局部电位:主要包括感受器电位,突触后电位。此外,电生理学实验中电剌激产生的电紧张电位,也遵循同样的变化规律。动作电位是全或无的,或者不产生,但一旦发生则竭尽全力, 几乎全部细胞膜皆经历一次由-60至+45mv的变化。比较之下,局部电位的特性截然不同,它是分级的,不传导的,可以相加或相减的,随时间和距离而衰减的。
2.心电电位及波形特征:
2.1心电电位产生原理:
心电图代表了整个心脏电激动的综合过程,以一个个心肌细胞的电激动为基础,心肌激动时细胞内发生电传变化。心肌细胞在静息状态下细胞膜外带正电荷,膜内带同等数量的负电荷,心肌细胞在静息状态保持着细胞膜内外的电位差,这称为极化状态。若以微电极插入
细胞内,可录得一个负电位,称为跨膜静息电位,静息电位的形成主要是由于细胞膜对离子的通透性不同,膜内外各种离子主要是K+、Na+的浓度存在很大差别,细胞内k+浓度较细胞外约高20~30倍,而细胞外Na+浓度高于细胞内10~20倍。细胞膜对 K+的通透性较高,于是一部分K+顺着浓度梯度外流至膜外,增加了膜外正电荷膜内的有机负离子(主要是蛋白质大分子)有随K+外流的倾向,但因分子大,不能通过膜而被阻滞于膜的内表面。膜外正电的排斥作用和膜内负电的吸引作用,使K+的继续外流受阻而达到平衡时,在膜的两侧便形成极化状态。不同类型的心肌纤维,静息电位不同;快反应纤维,如心室肌为-80~-90mV,慢反应纤维,如窦房结则仅-40~-70mV。当心肌细胞受到刺激(或自发地)而兴奋时,细胞膜内外的电位迅速变化。细胞膜内外的电位差在瞬间消失,细胞内的电位由-90mV迅速变为0mV,乃至+20~+30mV。也就是说极化状态消失,这过程称为除极过程。以心室肌为例,膜电位从静息时的-80~-90mV降至-60~-70mV的阈电位水平,即迅速开始除极。随后细胞内又逐渐恢复其负电位,这过程称为复极。由除极至复极,膜内电位由负变正及又回至静息电位的一系列电位变化称为跨膜动作电位。可画成一条曲线,分成为5个时相。
2.2心电各波产生原理及波形特征
①p波
为左右心房的除极波,起点表示右心房开始除极,终点代表两个心房除极完毕。P波前半部代表右心房除极,后半部代表左心房除极。 P波的形态在大部分导联上一般呈钝圆形,有时可能有轻度切迹。心脏激活动起源于窦房结,因此心房除极的综合向量是指向左、前、下的,所以P波方向在Ⅰ、Ⅱ、aVF、V4-V6导联向上,aVR导联向下,其余导联呈双向、倒置或低平均可。 时间:正常人P波时间一般小于0.12s。
振幅:P波振幅在肢体导联一般小于0.25mV,胸导联一般小于0.2mV。 P波的形成:正常心脏的激动来源于窦房结。窦房结的激动沿房间、结间传导束分别传至左、右心房及房室交界区。窦房结位于右心房上腔静腔入口处,故激动首先传至右心房,稍后传至左心房,相继引起左、右心房的除极而产生P波。右心房位于右前方,左心房位于左后方,心房的除极顺序是:从右心房上部开始,继而是辐射快向右心房下部及左心房扩展。因此,心房除极时所产生的电力(可看作一对较强的电偶)先是指向前下方,稍偏右或偏左,随后转向左后方,当两侧心房除极结束,除极电力便随之消失。 ②Ta(Tp)波
代表心房肌复极过程中的电位变化,也称心房复极波。
Ta(TP)波的形成:Ta(TP)波是心房复极波。心房复极的顺序是:先除极的心房肌先复极,后除极的心房肌后复极。复极时产生的一系列电偶为:电穴在前,电源在后,与除极时相反。因此,在同一导联上的Ta波,其方向与P波相反。Ta波振幅很小,又常常重叠在P-R段或QRS波群之中,故一般不易辨认。在心动过速时,偶可落在ST段而致其移位。 ③QRS波群
是反映左、右心室(包括室间隔)除极的电位变化。其中第1个向下的波为Q波,继Q波之后的一个向上的高波为R波,继R波之后的向下的波为S波。QRS波群是广义代表心室肌的除极波,并不一定每个QRS波群都有Q、R、S三个波。QRS波许可有多种形态,通常依据各波的方向、大小,分别用大、小写的英文字母表示之。
QRS波群的形成:激动自心房传至房室交界区后,其传导速度骤然减慢,然后通过房室束,左、右束支,迅速下传至心室。由于左束支在室间隔左侧中部较早分出细小的分支,故心室除极顺序先从左侧室间隔开始,然后迅速向右上、下方扩展,此时产生的除极电力指向右前方,偏上或偏下。与此同时,沿右束支下传的激动使右侧室间隔及心室部也开始除极。以后激动通过左、右束支及其分支以及遍布于心内膜下的浦肯野纤维,迅速引起两侧心室除极,且又几乎同时自心内膜指向心外膜。两侧心室除极时,由于左心室产生的电力较右室大,故此时其综合的除极电力指向左前方。右心室壁较左心室壁薄,因此当右心室除极终了时,左室壁仍在继续除极,且又缺少右心室除极电力的对抗,故其综合电力更偏左,且较前更大。左心室后底部及室间隔底部是心室壁中最后除极的部分,其除极电力明显减少,且指向后上方。根据心电向量的观念,心室除极的电活动也可用空间主体向量环来研究,但比P环更为复杂,QRS环先向左前下,然后向左下,最后向左后上回至零点。心电图各导联中的QRS波群,实际上是空间QRS心电向量环经过两次投影而形成,首先QRS心电向量环在三个相互垂直的平面(即额面、水平面、右侧面)上投影,形成三个互相不相同的平面QRS心电向量环。其中额面QRS心电向量环投影在心电图各肢体导联的导联轴上,水平面QRS心电向量环投影在各胸导联的导联轴上,形成相应的波形。心电图各导联中QRS波群的形态、方向、电压取决于各导联轴与平面QRS心电向量环的方向与角度。如其方向指向导联轴的正侧,且与导联轴倾于平行,则为正向波,且电压较高,反之则相反。
各单极导联中QRS波群的形成,主要是各导联探查电极所“面向”的心室肌的电位影像记录。故有的学者将单极导联所记录的QRS波群分为五种基本图形:右心室图形;左心室图形;右心腔图形;左心图形;心室后部图形。如下图:
④T波
共分享92篇相关文档