云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 八年级下17勾股定理全章教案

八年级下17勾股定理全章教案

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 5:24:09

17.1勾股定理(1)

一、教学目标:

1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。

2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。

3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识. 二、教学重点、难点:

重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。 三、教学方法及教学手段:

采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。 四、教学过程:

1.创设情境,导入课题

多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。 2.自主探索,合作交流 活动一:动脑想一想

小明用一边长为1cm的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为1cm),你能知道斜边的长吗?

③观察图形,并填空:

⑴正方形P的面积为 cm, 正方形Q 的面积为 cm, 正方形R的面积为 cm。

⑵你能发现图中正方形P、Q、R的面积之间有什么关系?从中你发现了什么?

活动二:动手做一做

其它一般的直角三角形,是否也有类似的性质呢?

(你打算用什么方法来研究?共同讨论方法后再确立研究方向) (图中每一小方格表示1cm)

R22A2PCQBR2A⑴正方形P的面积为 cm,

BPC2Q正方形Q的面积为 cm,

1

2正方形R的面积为 cm2。 ⑵正方形P、Q、R的面积之间的关系 是什么?

⑶你会用直角三角形的边长表示正方形P、Q、R的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。

试一试:①在方格图中,画出两条直角边分别为5cm、12cm的直角三角形,②再用刻度尺量出斜边长,③验证刚才的结论对这个直角三角形是否成立?

让学生自己总结,并用符号语言、文字语言表达勾股定理的内容。 3.验证定理,拓展提高

请你利用手中的直角三角形纸片,通过拼图来验证刚才大家的发现 ..

拼一拼:给出4个全等的直角三角形纸片,拼一拼,摆一摆,看看能否得到一个以C为一边的正方形?(介绍赵爽弦图和2002ICM标志)

4.运用新知,体验成功

例1. Rt△ABC中,?C=90°,AB=C,AC=b,BC=a ⑴已知AC=6,BC=8,求AB. ⑵已知c=15, b=9,求a. (提醒学生注意边的位置)

例2:看图填空(图中的三角形都是直角三角形,四边形都为正方形)

AbCacBx cm236cm2y cm280cm2A3cmB4cm64cm233cm2Cx= y= 正方形C的面积为

5.反馈练习,巩固新知 一、判断

①直角三角形中,两边的平方和等于第三边的平方( ) ②Rt△ABC中,a?3,b?4,则c?5( )

二、1.在Rt△ABC中,?A?90?,AB?c,BC?a,AC?b ①若c?8,a?10,则b? . ②若b?5,c?12,则a? .

③若b:c?3:4,a?15,则b? ,c? .

2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形边长是7cm,则正方形

BcAaCb2

A、B、C、D的面积和是 cm2。

CDBA7cm3.生活中的数学——你知道吗?

小红家新买了一台29英寸(74cm)的电视机,小红量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他认为营业员搞错了,你同意他的想法吗?你能作出合理的解释吗?

6.课堂小结:

师生一起回顾本节知识,主要是让学生回忆学到了哪些知识和方法,教师最后再作补充。(1数学家大会所用标志。2勾股定理是宇宙语言。3同学们,学了今天的课后,如果你对勾股定理另有自己的想法和证法,请你告诉我)

7.作业布置)

教学后记:

17、1 勾股定理(二)

一、教学目标

1、会用勾股定理进行简单的计算。 2、树立数形结合的思想、分类讨论思想。 二、重点、难点

1、重点:勾股定理的简单计算。 2、难点:勾股定理的灵活运用。 3、难点的突破方法:

⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。

⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力

⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。

⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。

三、例题的意图分析

3

例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。

例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。 例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。 四、课堂引入

复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。 五、例习题分析

例1(补充)在Rt△ABC,∠C=90°

⑴已知a=b=5,求c。 ⑵已知a=1,c=2, 求b。 ⑶已知c=17,b=8, 求a。 ⑷已知a:b=1:2,c=5, 求a。 ⑸已知b=15,∠A=30°,求a,c。

分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。

例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。

例3(补充)已知:如图,等边△ABC的边长是6cm。

⑴求等边△ABC的高。 ⑵求S△ABC。

分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法。欲求高CD,可将其置身于Rt△ADC或Rt△BDC中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=六、课堂练习 1、填空题

⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= 。 ⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= 。

⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= 。 ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。 ⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 。

4

A D B C 1AB=3cm,则此题可解。 2

搜索更多关于: 八年级下17勾股定理全章教案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

17.1勾股定理(1) 一、教学目标: 1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。 2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。 3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识. 二、教学重点、难点: 重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。 三、教学方法及教学手段: 采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。 四、教学过程: 1.创设情境,导入课题 多媒体演示勾股树图片,激发学生求知欲

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com