云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020年湖北省中考二轮复习专题汇编:《二次函数的综合》

2020年湖北省中考二轮复习专题汇编:《二次函数的综合》

  • 62 次阅读
  • 3 次下载
  • 2025/5/7 20:01:10

∴x2+x﹣3=3, 解得x=∴P2(

或x=,3)或P3(

,3)

,3)或P3

综上所述存在3个点符合题意,坐标分别是P1(﹣3,﹣3)或P2((

,3).

5.如图,抛物线y=﹣x2+bx+c与x轴正半轴交于A点,与y轴正半轴交于B,直线AB的解析式为y=﹣x+3. (1)求抛物线解析式;

(2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;

(3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE.

解:(1)∵直线AB的解析式为y=﹣x+3, ∴A(3,0),B(0,3),

∵抛物线y=﹣x2+bx+c经过A点,B点, ∴

,解得

∴抛物线解析式为y=﹣x2+2x+3.

(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H.

∵OA=OB,∠AOB=90°, ∴∠PAN=45°, ∵∠NMP=90°, ∴∠PAN=∠NMP,

∴N、P、A三点在以M为圆心MA为半径的⊙M上, ∴MN=MP,

∵∠NHM=∠PGM=∠NMP=90°,

∴∠NMH+∠PMG=90°,∠PMG+∠MPG=90°, ∴∠NMH=∠MPG, ∴△NMH≌△MPG, ∴NH=MG,HM=PG, ∵P(t,0),

∴Q(t,﹣t2+2t+3),M(∴PG=MH=∴Ny=

﹣t=,

+

),

,HG=

∵点N在直线AB上, ∴Ny=﹣Nx+3,

∴Nx=3﹣

(3)如图2中,

=(0<t<3).

∵MN∥AE,QM=MA, ∴EN=QN, ∴

=,

∴t2﹣2t=0,

解得t=2或0(舍弃), ∴t=2时,MN∥AE.

6.如图,在平面直角坐标系xOy中,二次函数y=﹣

+bx+c的图象经过点A(1,0),

且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣

+bx+c的图象分别交于B,C两点,点B在第一象限. (1)求二次函数y=﹣

+bx+c的表达式;

(2)连接AB,求AB的长;

(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

解:(1)当x=0时,y=c,即(0,c).

由当x=0和x=5时所对应的函数值相等,得(5,c). 将(5,c)(1,0)代入函数解析式,得

解得.

故抛物线的解析式为y=﹣x2+x﹣2; (2)联立抛物线与直线,得

解得,,

即B(2,1),C(5,﹣2). 由勾股定理,得

AB=

(3)如图:

=;

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∴x2+x﹣3=3, 解得x=∴P2(或x=,3)或P3(, ,3) ,3)或P3综上所述存在3个点符合题意,坐标分别是P1(﹣3,﹣3)或P2(( ,3). 5.如图,抛物线y=﹣x2+bx+c与x轴正半轴交于A点,与y轴正半轴交于B,直线AB的解析式为y=﹣x+3. (1)求抛物线解析式; (2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式; (3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE. 解:(1)∵直线AB的解析式为y=﹣x+3, ∴

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com