当前位置:首页 > 普通高中数学课程标准
工,在每台A,B上加工一件甲所需工时分别为1时、2时,加工一件乙所需工时分别为2时、1时,A,B两种设备每月有效使用台时数分别为400和500。如何安排生产可使收入最大? 解:这个问题的数学模型是二元线性规划。
设甲、乙两种产品的产量分别为x,y件,约束条件是
?x?2y?400?2x?y?500???x?0? ?y?0
目标函数是f?3x?2y。
要求出适当的x,y,使f?3x?2y取得最大值。
先要画出可行域,如图。考虑3x?2y?a,a是参数,将它变形为
y??3a3x??22,这是斜率为2、随a变化的一簇直
aa线。2是直线在y轴上的截距,当2最大时a最大,当然直线要与可行域相交,即在满足约束条件时目标函数取得最大值。
在这个问题中,使3x?2y取得最大值的
?x,y?是两直线2x?y?500与x?2y?400的交点(200,100)。
因此,甲、乙两种产品的每月产量分别为200、100件时,可得最大收入800千元。
例4. 某工厂建造一个长方体无盖贮水池,其容积为4800m,深度为3m。如果池底每1m的造价为150元,池壁每1m322的造价为120元,怎样设计水池能使总造价最低,最低总造价是多少元?
二、选修课程
系列1,系列2说明
在完成必修课程学习的基础上,希望进一步学习数学的学生,可以根据自己的兴趣和需求,选择学习系列1,系列2。 系列1是为希望在人文、社会科学等方面发展的学生而设置的,包括2个模块,共4学分。系列2则是为希望在理工、经济等方面发展的学生设置的,包括3个模块,共6学分。 系列1的内容分别为:
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系扩充与复数的引入、框图。 系列2的内容分别为;
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。 选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。 选修2-3:计数原理、统计案例、概率。
在系列1、系列2的课程中,有一些内容及要求是相同的,例如,常用逻辑用语、统计案例、数系扩充与复数等;有一些内容基本相同,但要求不同,如导数及其应用、圆锥曲线与方程、推理与证明;还有一些内容是不同的,如系列1中安排了框图等内容,系列2安排了空间中的向量与立体几何、计数原理、离散型随机变量及其分布等内容。
系 列 1 选修1-1
本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、导数及其应用。
正确地使用逻辑用语是现代社会公民应该具备的基本素质。无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。 在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。
内容与要求
1. 常用逻辑用语(约8课时) (1)命题及其关系
①了解命题的逆命题、否命题与逆否命题。
②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。 (2)简单的逻辑联结词
通过数学实例,了解逻辑联结词“或”“且”“非”的含义。 (3)全称量词与存在量词
①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。 ②能正确地对含有一个量词的命题进行否定。 2. 圆锥曲线与方程(约12课时)
(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 (2)经历从具体情境中抽象出椭圆模型的过程(参见例1),掌握椭圆的定义、标准方程及简单几何性质。 (3)了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。 (4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想。 (5)了解圆锥曲线的简单应用。 3. 导数及其应用(约16课时) (1)导数概念及其几何意义
①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见例2、例3)。 ②通过函数图象直观地理解导数的几何意义。 (2)导数的运算
①能根据导数定义,求函数
y?c,y?x,y?x2,y?1x的导数。
②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 ③会使用导数公式表。
(3)导数在研究函数中的应用
①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值。 (4)生活中的优化问题举例
例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见例5)。 (5)数学文化
收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本标准中“数学文化”的要求(参见第104页)。
说明与建议
1. 在常用逻辑用语教学中,应特别注意以下几个问题。
(1)这里考虑的命题是指明确地给出条件和结论的命题,对“命题的逆命题、否命题与逆否命题”只要求作一般性了解,重点关注四种命题的相互关系和命题的必要条件、充分条件、充要条件。 (2)对逻辑联结词“或”“且”“非”的含义,只要求通过数学实例加以了解,使学生正确地表述相关的数学内容。 (3)对于量词,重在理解它们的含义,不要追求它们的形式化定义。
(4)注意引导学生在使用常用逻辑用语的过程中,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简洁性。避免对逻辑用语的机械记忆和抽象解释,不要求使用真值表。 2. 在引入圆锥曲线时,应通过丰富的实例(如行星运行轨道、抛物运动轨迹、探照灯的镜面),使学生了解圆锥曲线的背景与应用。
3. 教师应向学生展示平面截圆锥得到椭圆的过程,使学生加深对圆锥曲线的理解。有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线(参见例1)。
4. 教师应向学生展现圆锥曲线在实际中的应用,例如,投掷铅球的运行轨迹,卫星的运行轨迹等。
5. 本模块中,导数的概念是通过实际背景和具体应用的实例引入的。教学中,可以通过研究增长率、膨胀率、效率、密度、速度等反映导数应用的实例,引导学生经历由平均变化率到瞬时变化率的过程,知道瞬时变化率就是导数。通过感受导数在研究函数和解决实际问题中的作用,体会导数的思想及其内涵。这样处理的目的是帮助学生直观理解导数的背景、思想和作用。 6. 在教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值。应使学生认识到,任何事物的变化率都可以用导数来描述。应当避免过量的形式化运算练习。
参考案例
例1. 如图,用一个平面去截圆锥,这个平面与圆锥的交线是一个椭圆。在圆锥内做大小两个球分别与圆锥和截面相切。那么,截面与两个球的切点恰是椭圆的两个焦点。
共分享92篇相关文档