当前位置:首页 > 六年级数校本课程 - 图文
图书室原来共有图书
分析与解:与例3类似,甲、乙组人数都发生了变化,不变量是甲、乙组的总人数,所以以甲、乙组的总人数为单位“1”。
例5 公路上同向行驶着三辆汽车,客车在前,货车在中,小轿车在后。在某一时刻,货车与客车、小轿车的距离相等;走了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,再过多少分钟,货车追上客车?
分析与解:根据“在某一时刻,货车与客车、小轿车的距离相等”,设这段距离为单位“1”。由“走了10分钟,小轿车追上了货车”,可知小轿
32
可知小轿车(10+5)分钟比客车多行了两个这样的距离,每分钟多行这段距离的
两班各有多少人?
乙班有84-48=36(人)。
练习7
树上原有多少个桃?
33
剩下的部分收完后刚好又装满6筐。共收西红柿多少千克?
7.六年级两个班共有学生94人,其中女生有39人,已知一班的女生占本
第八课 比和比例
课程目标:
比的概念是借助于除法的概念建立的。两个数相除叫做两个数的比表示两个比相等的式子叫做比例(式) 课程内容:比和比例 课程实施:
比的概念是借助于除法的概念建立的。
两个数相除叫做两个数的比。例如,5÷6可记作5∶6。
比值。
表示两个比相等的式子叫做比例(式)。如,3∶7=9∶21。判断两个比是否成比例,就要看它们的比值是否相等。两个比的比值相等,这两个比能组成比例,否则不能组成比例。
34
在任意一个比例中,两个外项的积等于两个内项的积。即:如果a∶b=c∶d,那么a×d=b×c。
两个数的比叫做单比,两个以上的数的比叫做连比。例如a∶b∶c。连比中的“∶”不能用“÷”代替,不能把连比看成连除。把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍数。例如, 甲∶乙=5∶6,乙∶丙=4∶3, 因为[6,4]=12,所以
5∶ 6=10∶ 12, 4∶3=12∶9, 得到甲∶乙∶丙=10∶12∶9。 例1 已知3∶(x-1)=7∶9,求x。 解: 7×(x-1)=3×9, x-1=3×9÷7,
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。由此求出
女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。
35
共分享92篇相关文档