当前位置:首页 > (鲁京津琼专用)2020版高考数学一轮复习专题6数列第41练数列的前n项和练习 - 图文
[基础保分练]
1111
1.数列1,2,3,4,…,前n项和为( )
24816
2
1n+n
A.1-n+ 22
2
1n+nB.-n+ 222
1n+nD.n+ 22
n2-n
C.-n+1+ 22
1
2.数列{an}中,an=(-1)nn,则a1+a2+…+a10等于( ) A.5B.-5C.10D.-10
3.数列{an}满足an+1+an=(-1)n·n,则数列{an}的前20项的和为( ) A.-100B.100C.-110D.110
4.(2019·湖南长沙市雅礼中学月考)数列{an}满足:a1=1,a2=-1,a3=-2,an+2=an+1-an(n∈N*),则数列{an}的前2019项的和为( ) A.1B.-2C.-1514D.-1516
5.(2019·化州模拟)已知数列{an}中,a1=1,a2==
111
,a3=,a4=,…,an
1+21+2+31+2+3+4
1
,则数列{an}的前n项和Sn等于( )
1+2+3+4+…+n
n+1n2n2n
A.B.C.D.
nn+12n+1n+1
n+1
6.已知数列{an}的通项公式为an=log2(n∈N*),设其前n项和为Sn,则使Sn<-5成立的正整
n+2数n有( ) A.最小值63 C.最小值31
B.最大值63 D.最大值31
7.(2018·上海市奉贤区调研)已知正数数列{an}是公比不等于1的等比数列,且lga1+lga2019=0,2
若f(x)=,则f(a1)+f(a2)+…+f(a2019)等于( )
1+x2A.2018B.4036C.2019D.4038
S1+S2+…+Sn
8.在有穷数列{an}中,Sn为{an}的前n项和,若把称为数列{an}的“优化和”,现
n有一个共2017项的数列{an}:a1,a2,…,a2017,若其“优化和”为2018,则有2018项的数列:1,a1,a2,…,a2017的“优化和”为( ) A.2016B.2017C.2018D.2019
nπ
9.数列{an}的通项是an=n2cos+1,其前n项和记为Sn,则S20=________.
2
?1?
10.已知数列{an}中,a1=1,a3=6,且an=an-1+λn(n≥2).则数列?a?的前n项和为________.
?n?
1
[能力提升练]
1.已知数列{an}中第15项a15=256,数列{bn}满足log2b1+log2b2+…+log2b14=7,且an+1=an·bn,则a1等于( ) 1
A.B.1C.2D.4 2
2x+11??2??2018?等于( ) 2.已知f(x)=,则f?+f+…+f?2019??2019??2019?2x-1A.2016B.2017C.2018D.2019
3.(2019·湖南长沙市雅礼中学月考)已知数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),且bn=2nπ
ancos,记Sn为数列{bn}的前n项和,则S24等于( )
3A.304B.303C.300D.201
4.已知数列{an},定义数列{an+1-2an}为数列{an}的“2倍差数列”,若{an}的“2倍差数列”的通项公式为an+1-2an=2n1,且a1=2,若数列{an}的前n项和为Sn,则S33等于( )
+
A.238+1B.239+2C.238+2D.239
5.已知数列{an}对任意n∈N*,总有a1a2…an=2n+1成立,记bn=(-1)n1·
+
4nan2n+1
2,则数列{bn}的前2n项和为________.
11n-1?*x+?-2是R上的奇函数,an=f(0)+f??+…+f?6.已知F(x)=f?+f(1),n∈N,则数列{an}?2??n??n?的通项公式为________.
2
答案精析
基础保分练
1.A 2.A 3.A 4.B 5.D 6.A
7.C [∵正数数列{an}是公比不等于1的等比数列,且lga1+lga2019=0, ∴lg(a1·a2019)=0,即a1·a2019=1. 2
∵函数f(x)=,
1+x21?22
∴f(x)+f?= 2+?x?1+x1
1+2x2+2x2==2, 1+x2∴令T=f(a1)+f(a2)+…+f(a2019), 则T=f(a2019)+f(a2018)+…+f(a1),
∴2T=f(a1)+f(a2019)+f(a2)+f(a2018)+…+f(a2019)+f(a1)=2×2019, ∴T=2019.]
8.C [因为a1,a2,…,a2017的“优化和”为 a1+a1+a2+…+a1+a2+…+a2017
,
2017故
2017a1+2016a2+2015a3+…+a2017
2017
=2018,
也就是2017a1+2016a2+2015a3+…+a2017 =2017×2018.
又1,a1,a2,…,a2017的“优化和”为 2018×1+2017a1+2016a2+2015a3+…+a2017 2018=
2018+2017×1018
2018
=2018,故选C.] 2n
9.240 10.
n+1能力提升练
1.C [由log2b1+log2b2+…+log2b14=log2(b1·b2·…·b14)=7,得b1·b2·…·b14=27, an+1a2a3a14a15a1528
又an+1=an·bn,即bn=,有b1·b2·…·b14=··…··==,故a1=2.]
ana1a2a13a14a1a12x+12
2.C [∵f(x)+f(1-x)=+2x-12
1-x+1
=2,
1-x-1
3
1??2??2018? ∴f?+f+…+f?2019??2019??2019?=1009×2=2018.]
3.A [∵nan+1=(n+1)an+n(n+1), ∴
an+1an?an?
-=1,∴数列?n?是公差与首项都为1的等差数列,
??n+1n
an∴=1+(n-1)×1,可得an=n2. n2nπ2nπ
∵bn=ancos,∴bn=n2cos,
332
令n=3k-2,k∈N*,则b3k-2=(3k-2)2cosk∈N*,
1
同理可得b3k-1=-(3k-1)2,k∈N*,
2b3k=(3k)2,k∈N*.
1
∴b3k-2+b3k-1+b3k=-(3k-2)2
215
-(3k-1)2+(3k)2=9k-,k∈N*, 225则S24=9×(1+2+…+8)-×8
2=304.]
4.B [根据题意得an+1-2an=2n1,
+
3k-2π1
=-(3k-2)2,
32
a1=2, ∴
an+1an+-n=1, 2n12
??
?an?
∴数列?2n?表示首项为1,
公差d=1的等差数列,
an∴n=1+(n-1)=n,∴an=n·2n, 2∴Sn=1×21+2×22+3×23+…+n·2n, ∴2Sn=1×22+2×23+3×24+…+n·2n1,
+
∴-Sn=2+22+23+24+…+2n-n·2n1
+
21-2n+++=-n·2n1=-2+2n1-n·2n1,
1-2=-2+(1-n)2n1,
+
∴Sn=(n-1)2n1+2,S33=(33-1)2331+2=239+2,故选B.]
+
+
5.
4n
4n+1
4
解析 ∵a1a2…an=2n+1,① 当n=1时,a1=3;
当n≥2时,a1a2…an-1=2n-1,② 2n+1
①②两式相除得an=,
2n-1当n=1时,a1=3适合上式. 2n+1∴an=,
2n-1∴bn=(-1)n
+1
4n·an
2n+122n+14n·
2n-1+
=(-1)n1
2n+1211+
=(-1)n1·?2n-1+2n+1?,
??111111+?-?+?+?+? T2n=??3??35??57?11?11?+++…+?-??79??4n-34n-1? 11
-?4n-1+4n+1?
??
14n
=1-=.
4n+14n+16.an=2(n+1)
1
x+?-2是R上的奇函数,故F(-x)=-F(x), 解析 由题意知F(x)=f??2?1??1?
代入得f??2-x?+f?2+x?=4, x∈R,
即f(x)+f(1-x)=4,
1??n-1?+f(1), an=f(0)+f?+…+f?n??n?an=f(1)+f?
1?n-1?+…+f??n?+f(0), ?n?倒序相加可得2an=4(n+1),即an=2(n+1).
5
共分享92篇相关文档