当前位置:首页 > 2019年中考数学真题分类训练——专题十:三角形
AC?AF, ∵AE?AB,∴△BAC≌△EAF, ∴EF?BC.
(2)∵AB?AE,?ABC?65?, ∴?BAE?180??65??2?50?, ∴?FAG?50?, ∵△BAC≌△EAF, ∴?F??C?28?, ∴?FGC?50??28??78?.
59.(2019无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O. 求证:(1)△DBC≌△ECB; (2)OB?OC.
证明:(1)∵AB=AC, ∴∠ECB=∠DBC,
?BD?CE?在△DBC与△ECB中,??DBC??ECB,
?BC?CB?∴△DBC≌△ECB.
(2)由(1)△DBC≌△ECB, ∴∠DCB=∠EBC,
∴OB=OC.
60.(2019枣庄)在△ABC中,?BAC?90?,AB?AC,AD?BC于点D.
(1)如图1,点M,N分别在AD,AB上,且?BMN?90?,当∠AMN?30?,AB?2时,求线段
AM的长;
(2)如图2,点E,F分别在AB,AC上,且?EDF?90?,求证:BE?AF;
(3)如图3,点M在AD的延长线上,点N在AC上,且?BMN?90?,求证:AB?AN? 2AM.
证明:(1)∵?BAC?90?,AB?AC,AD?BC,
∴AD?BD?DC,?ABC??ACB?45?,?BAD??CAD?45?, ∵AB?2,∴AD?BD?DC?2,,
∵?AMN?30?,∴?BMD?180??90??30??60?, ∴?BMD?30?,∴BM?2DM,
由勾股定理得,BM2?DM2?BD2,即(2DM)2?DM2?(2)2,解得DM?∴AM?AD?DM?23, 32?23. 3(2)∵AD?BC,?EDF?90?,∴?BDE??ADF,
??B??DAF?在△BDE和△ADF中,?DB?DA,
??BDE??ADF?∴△BDE≌△ADF, ∴BE?AF.
(3)如图,过点M作ME//BC交AB的延长线于E,
∴?AME?90?, 则AE?2AB,?E?45?,∴ME?MA,
∵?AME?90?,?BMN?90?, ∴?BME??AMN,
??E??MAN?在△BME和△AMN中,?ME?MA,
??BME??AMN?∴△BME≌△AMN,∴BE?AN, ∴AB?AN?AB?BE?AE?2AM.
61.(2019温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交
ED的延长线于点F.
(1)求证:△BDE≌△CDF;
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
证明:(1)∵CF∥AB, ∴?B??FCD,?BED??F, ∵AD是BC边上的中线,∴BD?CD,
∴△BDE≌△CDF. (2)∵△BDE≌△CDF, ∴BE?CF?2,
∴AB?AE?BE?1?2?3. ∵AD?BC,BD?CD, ∴AC?AB?3.
62.(2019杭州)如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.
证明:(1)∵线段AB的垂直平分线与BC边交于点P, ∴PA=PB, ∴∠B=∠BAP, ∵∠APC=∠B+∠BAP, ∴∠APC=2∠B;
(2)根据题意可知BA=BQ, ∴∠BAQ=∠BQA,
∵∠AQC=3∠B,∠AQC=∠B+∠BAQ, ∴∠BQA=2∠B,
共分享92篇相关文档