当前位置:首页 > 新冀教版七年级数学下册二元一次方程组的解法1
新冀教版七年级数学下册《二元一次方程组的解法(1)》教案
6.2 二元一次方程组的解法(1) 教学设计
教学设计思路
本节分三课时完成,在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考核归纳概括,发现和总结出消元化归的思想方法.
教学目标 知识与技能:
根据方程组的情况,能恰当地应用“代入消元法”和“加减消元法”解方程组. 过程与方法:
1.通过探索,领会并掌握解二元一次方程的方法.
2.体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程,由此感受“划归”思想的广泛应用.
情感态度价值观:
通过自主探索、合作交流,感受化归的数学思想,从而享受学习数学的乐趣,提高学习数学的信心.
教学方法
引导发现法,谈话讨论法 课时安排 3课时. 教具学具准备
电脑或投影仪、自制胶片.
第一课时
重点难点
重点:应用代入消元法解二元一次方程组
难点:了解数学研究中“化未知为已知”的化归思想 教学过程设计
(一)师生互动活动设计
1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如x?2y?4等.
2.通过课本中求甲、乙两数的问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.
3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.
(二)整体感知
从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.
(三)教学步骤 1.创设情境,复习导入
(1)已知方程x?2y?4,先用含x的代数式表示y,再用含y的代数式表示x.并比较哪一种形式比较简单.
(2)选择题: 二元一次方程组??3x?2y?4的解是
?5x?2y?6?x??1?x?1?x??1?x?1???A.? B.? C. D.??111
y?y??y???y??1????2?2?2
【教法说明】 第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.
通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.
这样导入,可以激发学生的求知欲. 今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几何
思考讨论:列出二元一次方程组,如何处理才能将二元的转化为一元的呢? 2.探索新知
?y?x?6 ①例1:解方程?
?x?2y?9 ②【分析】求方程的解的过程叫做方程组,由方程组的解的概念可知,解方程组
?y?x?6 ①就是要求出同时满足此方程组中的两个方程的x和y的值.由于方程组??x?2y?9 ②中同一字母表示同一数量,所以方程①中的x与方程②中的x相等,经过一系列的变型,求出方程组的解.
定义:由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元法,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
3.大家谈谈
你能用上述方法解方程组??x?y?17?5x?3y?75()1吗? (2)学生活动:积极思考,在练习本上求解,研究如何消元,然后小组讨论,互相交流
教师巡视指导,发现并纠正学生的问题,把书写过程规范化.
共分享92篇相关文档