当前位置:首页 > 浙江省杭州市中考数学试卷和答案
2015年浙江省杭州市中考数学试卷
一、仔细选一选(每小题3分,共30分) 1.(3分)(2015?杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为( )
A.11.4×102 B.1.14×103 C.1.14×104 D.1.14×105 2.(3分)(2015?杭州)下列计算正确的是( ) A.23+26=29 B.23﹣24=21 C.23×23=29 D.24÷22=22 3.(3分)(2015?杭州)下列图形是中心对称图形的是( )
﹣
A. B. C. D.
4.(3分)(2015?杭州)下列各式的变形中,正确的是( ) A.(﹣x﹣y)(﹣x+y)=x2﹣y2 B.﹣x=
C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+1
5.(3分)(2015?杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=( ) A.20° B.30° C.70° D.110°
6.(3分)(2015?杭州)若k<<k+1(k是整数),则k=( ) A.6 B.7 C.8 D.9 7.(3分)(2015?杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )
A.54﹣x=20%×108 B.54﹣x=20%(108+x) C.54+x=20%×162 D.108﹣x=20%(54+x) 8.(3分)(2015?杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是( ) A.①②③ B.①②④ C.①③④ D.②③④ 9.(3分)(2015?杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( ) A.
B.
C.
D.
10.(3分)(2015?杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则( )
A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d 二、认真填一填(每小题4分,共24分) 11.(4分)(2015?杭州)数据1,2,3,5,5的众数是 ,平均数是 . 12.(4分)(2015?杭州)分解因式:m3n﹣4mn= .
13.(4分)(2015?杭州)函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而 (填写“增大”或“减小”). 14.(4分)(2015?杭州)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为 度(用关于α的代数式表示). 15.(4分)(2015?杭州)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k= .
16.(4分)(2015?杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD= .
三、全面答一答(共66分) 17.(6分)(2015?杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图. (1)试求出m的值;
(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数. 18.(8分)(2015?杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.
19.(8分)(2015?杭州)如图1,⊙O的半径为(rr>0),若点P′在射线OP上,满足OP′?OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长. 20.(10分)(2015?杭州)设函数y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常数). (1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时的函数的图象;
(2)根据图象,写出你发现的一条结论;
(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到的函数y3的图象,求函数y3的最小值. 21.(10分)(2015?杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度. (1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹). 22.(12分)(2015?杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E. (1)若
=,AE=2,求EC的长;
(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.
23.(12分)(2015?杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.
方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇. 请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式; (2)当20<y<30时,求t的取值范围;
(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;
(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?
2015年浙江省杭州市中考数学试卷
参考答案与试题解析
一、仔细选一选(每小题3分,共30分) 1.(3分)(2015?杭州)统计显示,2013年底杭州市各类高中在校学生人数大约是11.4万人,将11.4万用科学记数法表示应为( )
A.11.4×102 B.1.14×103 C.1.14×104 D.1.14×105 【解答】解:将11.4万用科学记数法表示为:1.14×105. 故选D. 2.(3分)(2015?杭州)下列计算正确的是( ) A.23+26=29 B.23﹣24=21 C.23×23=29 D.24÷22=22 【解答】解:A、23与26不能合并,错误; B、23与24不能合并,错误; C、23×23=26,错误; D、24÷22=22,正确; 故选D. 3.(3分)(2015?杭州)下列图形是中心对称图形的是( )
﹣
A. B. C. D.
【解答】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A是中心对称图形. 故选:A. 4.(3分)(2015?杭州)下列各式的变形中,正确的是( ) A.(﹣x﹣y)(﹣x+y)=x2﹣y2 B.﹣x=
C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+1 【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确; B、
,错误;
C、x2﹣4x+3=(x﹣2)2﹣1,错误; D、x÷(x2+x)=
,错误;
故选A. 5.(3分)(2015?杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=( ) A.20° B.30° C.70° D.110°
【解答】解:∵四边形ABCD为圆的内接四边形, ∴∠A+∠C=180°,
∴∠C=180°﹣70°=110°. 故选D. 6.(3分)(2015?杭州)若k<<k+1(k是整数),则k=( ) A.6 B.7 C.8 D.9 【解答】解:∵k<<k+1(k是整数),9<<10, ∴k=9. 故选:D. 7.(3分)(2015?杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )
A.54﹣x=20%×108 B.54﹣x=20%(108+x) C.54+x=20%×162 D.108﹣x=20%(54+x)
【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x). 故选B. 8.(3分)(2015?杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是( ) A.①②③ B.①②④ C.①③④ D.②③④
【解答】解:由图1可知,18日的PM2.5浓度为25ug/m3,浓度最低,故①正确; 这六天中PM2.5浓度的中位数是
=79.5ug/m3,故②错误;
∵当AQI不大于100时称空气质量为“优良”, ∴18日、19日、20日、23日空气质量为优, 故③正确;
空气质量指数AQI与PM2.5浓度有关,故④正确; 故选:C. 9.(3分)(2015?杭州)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( ) A.
B.
C.
D.
【解答】解:连接AF,EF,AE,过点F作FN⊥AE于点N, ∵点A,B,C,D,E,F是边长为1的正六边形的顶点, ∴AF=EF=1,∠AFE=120°, ∴∠FAE=30°,
共分享92篇相关文档