当前位置:首页 > 《计量经济学》李子奈第三版课后习题Eviews实验报告
《计量经济学》实验报告
实验一:EViews5.0软件安装及基本操作
1.Eviews5.0的安装过程
解压安装包,双击“Setup.exe”,选择安装路径进行安装;安装完毕后,复制“eviews5.0破解文件夹”下的“eviews5.reg文件”和“eviews5.exe文件”到安装目录下;双击“Eviews5.reg”进行注册,安装完毕。
2.基本操作(数据来源于李子奈版课后习题P61.12)
运行Eviews,依次单击file→new→work file→unstructed→observation 31。命令栏中输入“data y gdp”,打开“y gdp”表,接下来将数据输入其中。
做出“y gdp”的散点图,依次单击quick→graph→scatter→gdp y。结果如下:
250020001500Y1000500001000020000GDP3000040000 开始进行LS回归:
命令栏中输入“ls y c gdp”回车,即得到回归结果如下: Dependent Variable: Y Method: Least Squares Date: 12/11/11 Time: 09:38 Sample: 1 31 weibo.com/kouqintang
Included observations: 31 Variable C GDP R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -10.39341 0.071032 Std. Error 86.05105 0.007406 t-Statistic -0.120782 9.591249 Prob. 0.9047 0.0000 621.0548 619.5803 14.36377 14.45629 91.99205 0.000000 0.760315 Mean dependent var 0.752050 S.D. dependent var 308.5175 Akaike info criterion 2760308. Schwarz criterion -220.6385 F-statistic 1.570581 Prob(F-statistic) 回归方程为:Y = -10.39340931 + 0.07103165248*GDP
对回归方程做检验:
斜率项t值9.59大于t在5%显著水平下的检验值2.045,拒绝零假设;截距项t值0.121小于2.045,接受零假设。可决系数0.76,拟合较好,方程F检验值91.99通过F检验。
下面进行预测:
拓展工作空间:打开work file窗口,单击 Proc→Structure,将End date的数据31→32;确定预测值的起止日期:打开work file窗口,点击Quick→Sample,填入“1 32”。打开GDP数据表,在GDP的最下方填,按回车键。在出现的Equation界面,点击Forecast出现相应界面如下:
3000Forecast: YFActual: YForecast sample: 1 32Adjusted sample: 1 31Included observations: 31Root Mean Squared Error Mean Absolute Error Mean Abs. Percent Error Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion 51015YF202530298.3994173.265326.345710.1768200.0000000.0683990.931601200010000-1000 双击YF,得到y32=593.3756,预测完毕。 weibo.com/kouqintang
实验二:回归模型的建立与检验
(数据来源于李子奈版课后习题P105.11)
运行Eviews,依次单击file→new→work file→unstructed→observation 10。命令栏中输入“data y x1 x2”,打开“y x1 x2”表,接下来将数据输入其中。
开始进行LS回归:
命令栏中输入“ls y c x1 x2”回车,即得到回归结果:
Dependent Variable: Y Method: Least Squares Date: 12/11/11 Time: 10:17 Sample: 1 10 Included observations: 10 Variable C X1 X2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 626.5093 -9.790570 0.028618 Std. Error 40.13010 3.197843 0.005838 t-Statistic 15.61195 -3.061617 4.902030 Prob. 0.0000 0.0183 0.0017 670.3300 49.04504 8.792975 8.883751 32.29408 0.000292 0.902218 Mean dependent var 0.874281 S.D. dependent var 17.38985 Akaike info criterion 2116.847 Schwarz criterion -40.96488 F-statistic 1.650804 Prob(F-statistic) 估计方程:
依次单击view→representations,得到回归方程为:
Y = 626.5092847 - 9.790570097*X1 + 0.02861815879*X2,参数估计完毕。直接查看结果计算得到随机干扰项的方差值为2116.847/(10-2-1)=309.55,可决系数为0.902,修正后的可决系数为0.874。F=32.294>5%显著水平下的F值4.74,即方程通过F检验;两个参数的t检验值均通过了5%显著水平下的t检验值2.365。
下面进行预测:
拓展工作空间:打开work file窗口,单击 Proc→Structure,将End date的数据10→11;确定预测值的起止日期:打开work file窗口,点击Quick→Sample,填入“1 11”。在x1的最下方填入35,在x2的最下方填入20000,按回车键。在出现的Equation界面,点击Forecast出现相应界面如下:
weibo.com/kouqintang
1000Forecast: YFActual: YForecast sample: 1 11Included observations: 10Root Mean Squared Error Mean Absolute Error Mean Abs. Percent Error Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion 14.5493913.184431.9972090.0108280.0000000.0257190.974281900800700600500123456YF7891011 双击YF,得到y11=856.2025,预测完毕。
实验三:异方差、自相关、多重共线性的检验
1.异方差检验(数据来源于李子奈版课后习题P154.8)
运行Eviews,依次单击file→new→work file→unstructed→observation 20。命令栏中输入“data y x”,打开“y x”表,接下来将数据输入其中。
开始进行LS回归,命令栏中输入“ls y c x”回车,即得到回归结果如下:
Dependent Variable: Y Method: Least Squares Date: 12/11/11 Time: 10:38 Sample: 1 20 Included observations: 20 Variable C X R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 272.3635 0.755125 Std. Error 159.6773 0.023316 t-Statistic 1.705713 32.38690 Prob. 0.1053 0.0000 5199.515 1625.275 13.69130 13.79087 1048.912 0.000000 0.983129 Mean dependent var 0.982192 S.D. dependent var 216.8900 Akaike info criterion 846743.0 Schwarz criterion -134.9130 F-statistic 2.087986 Prob(F-statistic) 回归方程为:Y = 272.3635389 + 0.7551249391*X
weibo.com/kouqintang
共分享92篇相关文档