当前位置:首页 > 山东省莱芜市2014年中考数学试卷
第 17 页 共 23 页
考点: 一元二次方程的应用;一元一次不等式组的应用. 分析: (1)设平均每年投资增长的百分率是x.根据2013年投资1000万元,得出2014年2投资1000(1+x)万元,2015年投资1000(1+x)万元,而2015年投资1210万元.据此列方程求解; (2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,根据2015年河道治污及园林绿化总面积不少于35000平方米及河道治污费用不少于园林绿化费用的4倍列出不等式组,解不等式组即可. 解答: 解:(1)设平均每年投资增长的百分率是x. 由题意得1000(1+x)2=1210, 解得x1=0.1,x2=﹣2.1(不合题意舍去). 答:平均每年投资增长的百分率为10%; (2)设2015年河道治污面积为a平方米,园林绿化面积为平方米, 由题意,得, 由①得a≤25500, 由②得a≥24200, ∴24200≤a≤25500, ∴968万≤400a≤1020万, ∴190万≤1210万﹣400a≤242万, 答:园林绿化的费用应在190万~242万的范围内. 点评: 本题考查了一元二次方程及一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式组.
23.(10分)(2014?莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=
(r是⊙O的半径).
(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切; (2)求EF?EC的值;
(3)如图2,当F是AB的四等分点时,求EC的值.
- 17 -
第 18 页 共 23 页
考点: 圆的综合题. 专题: 综合题. 分析: (1)连结OC、OE,OE交AB于H,如图1,由E是弧AB的中点,根据垂径定理的推论得到OE⊥AB,则∠HEF+∠HFE=90°,由对顶相等得∠HFE=∠CFD,则∠HEF+∠CFD=90°,再由DC=DF得∠CFD=∠DCF,加上∠OCE=∠OEC,所以∠OCE+∠DCE=∠HEF+∠CFD=90°,于是根据切线的判定定理得直线DC与⊙O相切; (2)由弧AE=弧BE,根据圆周角定理得到∠ABE=∠BCE,加上∠FEB=∠BEC,于是可判断△EBF∽△ECB,利用相似比得到EF?EC=BE2=(r)2=r2; (3)如图2,连结OA,由弧AE=弧BE得AE=BE=r,设OH=x,则HE=r﹣x,根据勾股定理,在Rt△OAH中有AH2+x2=r2;在Rt△EAH中由AH2+(r﹣x)2=(r)2,222利用等式的性质得x2﹣(r﹣x)=r﹣(r),即得x=r,则HE=r﹣r=r,在Rt△OAH中,根据勾股定理计算出AH=点,所以HF=AH=中的结论可计算出EC. ,由OE⊥AB得AH=BH,而F是AB的四等分r,然后利用(2),于是在Rt△EFH中可计算出EF=解答: (1)证明:连结OC、OE,OE交AB于H,如图1, ∵E是弧AB的中点, ∴OE⊥AB, ∴∠EHF=90°, ∴∠HEF+∠HFE=90°, 而∠HFE=∠CFD, ∴∠HEF+∠CFD=90°, ∵DC=DF, - 18 -
第 19 页 共 23 页
∴∠CFD=∠DCF, 而OC=OE, ∴∠OCE=∠OEC, ∴∠OCE+∠DCE=∠HEF+∠CFD=90°, ∴OC⊥CD, ∴直线DC与⊙O相切; (2)解:连结BC, ∵E是弧AB的中点, ∴弧AE=弧BE, ∴∠ABE=∠BCE, 而∠FEB=∠BEC, ∴△EBF∽△ECB, ∴EF:BE=BE:EC, ∴EF?EC=BE2=(r)2=r2; (3)解:如图2,连结OA, ∵弧AE=弧BE, ∴AE=BE=r, 设OH=x,则HE=r﹣x, 在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2, 在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2, ∴x2﹣(r﹣x)2=r2﹣(r)2,即得x=r, ∴HE=r﹣r=r, 在Rt△OAH中,AH=∵OE⊥AB, ∴AH=BH, 而F是AB的四等分点, ∴HF=AH=, ==, - 19 -
第 20 页 共 23 页
在Rt△EFH中,EF=∵EF?EC=r2, ∴∴EC=r?EC=r2, r. ==r, 点评: 本题考查了圆的综合题:熟练掌握垂径定理及其推论、切线的判定定理和圆周角定理;会利用勾股定理进行几何计算,利用相似三角形的知识解决有关线段等积的问题.
24.(12分)(2014?莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点. (1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.
- 20 -
共分享92篇相关文档