云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2016届北京市怀柔区高考数学查漏补缺试卷(解析版)

2016届北京市怀柔区高考数学查漏补缺试卷(解析版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/6 21:47:38

l2的斜率都存在,y=k(II)由题意可知:直线l1,设直线l1:(x﹣1),直线l2:设M(x1,y1),N(x2,y2),联立

,化为(x﹣1)[(2+k2)x﹣(k2﹣2)]=0,

解得x1=,y1=

把k换成﹣,可得x2=

,,

∴kMN=

=,

直线MN的方程为:,化为,

∴直线MN过定点当k=±1时,M

综上可得:直线MN必过定点

21.已知椭圆C:

+

. ,N

,此时直线MN也过定点

=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点

构成正三角形.

(1)求椭圆C的标准方程;

(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.

①证明:OT平分线段PQ(其中O为坐标原点); ②当

最小时,求点T的坐标.

【考点】直线与圆锥曲线的关系;椭圆的标准方程.

【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;

第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将示出来,由

取最小值时的条件获得等量关系,从而确定点T的坐标.

【解答】解:(1)依题意有解得

第25页(共28页)

所以椭圆C的标准方程为+=1.

(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0), ①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率

?(m2+3)y2﹣4my﹣2=0,

所以,

于是,从而,

即,则直线ON的斜率,

又由PQ⊥TF知,直线TF的斜率,得t=m.

从而

,即kOT=kON,

所以O,N,T三点共线,从而OT平分线段PQ,故得证. ②由两点间距离公式得由弦长公式得

, =

=,

所以,

令号),

,则

(当且仅当x2=2时,取“=”

第26页(共28页)

所以当3,﹣1).

1)最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,或(﹣

第27页(共28页)

2016年6月17日

第28页(共28页)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

l2的斜率都存在,y=k(II)由题意可知:直线l1,设直线l1:(x﹣1),直线l2:设M(x1,y1),N(x2,y2),联立 ,,化为(x﹣1)[(2+k2)x﹣(k2﹣2)]=0,解得x1=,y1=, 把k换成﹣,可得x2=,, ∴kMN==, 直线MN的方程为:,化为, ∴直线MN过定点当k=±1时,M综上可得:直线MN必过定点 21.已知椭圆C: +. ,N. ,此时直线MN也过定点 .=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆C的标准方程;

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com