当前位置:首页 > 最新北师大版八年级数学上册《探索勾股定理》教学设计(精品教案)
第一章 勾股定理
1. 探索勾股定理
课题:探索勾股定理 教学目标
1、知识与技能目标
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2、过程与方法
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
3、情感态度与价值观
在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.
教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
教学难点:勾股定理的发现
第1页
教学准备:多媒体课件 三、教学过程
第一环节:创设情境,引入新课
内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
意图:紧扣课题,自然引入,同时渗透爱国主义教育.
效果:激发起学生的求知欲和爱国热情. 第二环节:探索发现勾股定理 1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
第2页
问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
第3页
CABBAC(2)填表:
左图 右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
图1 图2 图3
学生的方法可能有: 方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,
1SC?4??2?3?1?13.
2A的面积 (单位面积) B的面积 (单位面积) C的面积 (单位面积) 方法二:
第4页
共分享92篇相关文档