云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 新版高考数学真题分类汇编:专题(14)推与证明、新定义(理科)及答案

新版高考数学真题分类汇编:专题(14)推与证明、新定义(理科)及答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/1 15:21:24

cosf?x??1在??,2??上有解”,并证明对任意x??0,??都有f?x????f?x??f???.

【答案】(1)详见解析(2)详见解析(3)详见解析

c都是一个函数值,(2)由于f?x?的值域为R,所以对任意c??即有x0?R,?f?a?,f?b???,

使得f?x0??c.

若x0?a,则由f?x?单调递增得到c?f?x0??f?a?,与c???f?a?,f?b???矛盾,所以

x0?a.同理可证x0?b.故存在x0??a,b?使得f?x0??c.

(3)若u0为cosf?x??1在?0,??上的解,则cosf?u0??1,且u0?????,2??,

cosf?u0????cosf?u0??1,即u0??为方程cosf?x??1在??,2??上的解.

同理,若u0??为方程cosf?x??1在??,2??上的解,则u0为该方程在?0,??上的解. 以下证明最后一部分结论.

由(2)所证知存在0?x0?x1?x2?x3?x4??,使得f?xi??i?,i?0,1,2,3,4. 而?xi,xi?1?是函数cosf?x?的单调区间,i?0,1,2,3.

与之前类似地可以证明:u0是cosf?x???1在?0,??上的解当且仅当u0??是

cosf?x???1在??,2??上的解.从而cosf?x???1在?0,??与??,2??上的解的个数相同.

故f?xi????f?xi??4?,i?0,1,2,3,4. 对于x??0,x1?,f?x???0,??,f?x?????4?,5??,

而cosf?x????cosf?x?,故f?x????f?x??4??f?x??f???. 类似地,当x??xi,xi?1?,i?1,2,3时,有f?x????f?x??f???. 结论成立.

【考点定位】新定义问题

【名师点睛】新定义问题一般先考察对定义的理解,这时只需一一验证定义中各个条件即可.二是考查满足新定义的函数的简单应用,如在某些条件下,满足新定义的函数有某些新的性质,这也是在新环境下研究“旧”性质,此时需结合新函数的新性质,探究“旧”性质.三是考查综合分析能力,主要将新性质有机应用在“旧”性质,创造性证明更新的性质.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

cosf?x??1在??,2??上有解”,并证明对任意x??0,??都有f?x????f?x??f???. 【答案】(1)详见解析(2)详见解析(3)详见解析 c都是一个函数值,(2)由于f?x?的值域为R,所以对任意c??即有x0?R,?f?a?,f?b???,使得f?x0??c. 若x0?a,则由f?x?单调递增得到c?f?x0??f?a?,与c???f?a?,f?b???矛盾,所以x0?a.同理可证x0?b.故存在x0??a,b?使得f?x0??c. (3)若u0为cosf?x??1在?0,??上的解,则cosf?u0??1,且u0?????,2??, cosf?u0????cosf?u0??1,即u0??为方程cosf?x??1在??,2??上的解. 同理,若u0?

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com