当前位置:首页 > spss 17中文版统计分析典型实例精粹
当所观察的现象同时与两个因素有关时,如某种服装的销量受价格和居民收入的影响,某种产品的生产成本受原材料价格和产量的影响等,通过交叉列联表分析,可以较好地反映出这两个因素之间有无关联性及两个因素与所观察现象之间的相关关系。
因此,数据交叉列联表分析主要包括两个基本任务:一是根据收集的样本数据,产生二维或多维交叉列联表;二是在交叉列联表的基础上,对两个变量间是否存在相关性进行检验。要获得变量之间的相关性,仅仅靠描述性统计的数据是不够的,还需要借助一些表示变量间相关程度的统计量和一些非参数检验的方法。
常用的衡量变量间相关程度的统计量是简单相关系数,但在交叉列联表分析中,由于行列变量往往不是连续变量,不符合计算简单相关系数的前提条件。因此,需要根据变量的性质选择其他的相关系数,如Kendall等级相关系数、Eta值等。
SPSS提供了多种适用于不同类型数据的相关系数表达,这些相关性检验的零假设都是:行和列变量之间相互独立,不存在显著的相关关系。根据SPSS检验后得出的相伴概率(Concomitant Significance)判断是否存在相关关系。如果相伴概率小于显著性水平0.05,那么拒绝零假设,行列变量之间彼此相关;如果相伴概率大于显著性水平0.05,那么接受原假设,行列变量之间彼此独立。
在交叉列联表分析中,SPSS所提供的相关关系的检验方法主要有以下3种:
(1)卡方(χ2)统计检验:常用于检验行列变量之间是否相关。计算公式为:
其中,f0表示实际观察频数,fe表示期望频数。
卡方统计量服从(行数 1) (列数 1)个自由度的卡方统计。SPSS在计算卡方统计量时,同时给出相应的相伴概率,由此判断行列变量之间是否相关。
(2)列联系数(Contingency coefficient):常用于名义变量之间的相关系数计算。计算公式由卡方统计量修改而得,公式如下:
(3) 系数(Phi and Cramer's V):常用于名义变量之间的相关系数计算。计算公式由卡方统计量修改而得,公式如下:
系数介于0和1之间,其中,K为行数和列数较小的实际数。
交叉列联表分析的具体操作步骤如下:
打开数据文件,选择【分析】(Analyze)菜单,单击【描述统计】(Descriptive Statistics)命令下的【交叉表】(Crosstabs)命令。\交叉表\(Crosstabs)主对话框如图3-13所示。
在该主对话框中,左边的变量列表为原变量列表,通过单击 按钮可选择一个或者几个变量进入右边的\行\(Row(s))变量列表框、\列\(Column(s))变量列表框和\层\(Layer)变量列表框中。
如果是二维列联表分析,只需选择行列变量即可,但如进行三维以上的列联表分析,可以将其他变量作为控制变量选到\层\(Layer)变量列表框中。有多个层控制变量时,可以根据实际的分析要求确定它们的层次,既可以是同层次的也可以是逐层叠加的。
在\交叉表\对话框底端有两个可选择项:
显示复式条形图(Display clustered bar chart):指定绘制各个变量不同交叉取值下关于频数分布的柱形图;
取消表格(Suppress table):不输出列联表的具体表格,而直接显示交叉列联表分析过程中的统计量,如果没有选中统计量,则不产生任何结果。所以,一般情况下,只有在分析行列变量间关系时选择此项。
该对话框的右端有4个按钮,从上到下依次为【精确】(Exact)按钮、【统计量】(Statistics)按钮、【单元格】(Cells)按钮和【格式】(Format)按钮。单击可进入对应的对话框。
单击【精确】(Exact)按钮,打开\精确检验\(Exact Tests)对话框,如图3-14所示。
该对话框提供了3种用于不同条件的检验方式来检验行列变量的相关性。用户可选择以下3种检验方式之一:
仅渐近法(Asymptotic only):适用于具有渐近分布的大样本数据,SPSS默认选择该项。
Monte Carlo(蒙特卡罗法):此项为精确显著性水平值的无偏估计,无需数据具有渐近分布的假设,是一种非常有效的计算确切显著性水平的方法。在\置信水平\(Confidence Level)参数框内输入数据,可以确定置信区间的大小,一般为90、95、99。在\样本数\(Number of samples)参数框中可以输入数据的样本容量。
精确(Exact):观察结果概率,同时在下面的\每个检验的时间限制为\(Time limit per test)的参数框内,选择进行精确检验的最大时间限度。
用户在本对话框内进行选择后,单击【继续】(Continue)按钮即可返回\交叉表\主对话框。一般情况下,\精确检验\(Exact Tests)对话框的选项都默认为系统默认值,不作调整。
单击【统计量】(Statistics)按钮,打开\交叉表:统计量\(Crosstabs:Statistics)对话框,如图3-15所示。
在该对话框中,用户可以选择输出合适的统计检验统计量。对话框中各选项的意义如下:
(1)卡方(Chi-square)检验复选框:检验列联表行列变量的独立性检验,也被称为Pearson chi-square检验、χ2检验。
(2)相关性(Correlations)检验复选框:输出列联表行列变量的Pearson相关系数或Spearman相关系数。
(3)名义(Nominal)栏:适用于名称变量统计量。
相依系数(Contingency coefficient):即Pearson相关系数或Spearman相关系数。
Phi 和Cramer变量( 系数):常用于名义变量之间的相关系数计算。计算公式由卡方统计量修改而得,如公式(3.13)所示。ψ系数介于0和1之间,其中,K为行数和列数较小的实际数。
共分享92篇相关文档