当前位置:首页 > 2016年山东省菏泽市中考数学试题(含解析)-精选
∴这个班同学年龄的中位数是15岁; 故答案为:15.
【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.
12.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6 . 【考点】一元二次方程的解. 【专题】推理填空题.
【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决. 【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根, ∴m2﹣2m﹣3=0, ∴m2﹣2m=3, ∴2m2﹣4m=6, 故答案为:6.
【点评】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.
13.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=
.
【考点】正方形的性质;等腰直角三角形;解直角三角形. 【专题】计算题.
【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD=再利用正方形的性质得CB=CD=
CE=
a,∠DCE=45°,
a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到
CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解. 【解答】解:作EF⊥BC于F,如图,设DE=CE=a, ∵△CDE为等腰直角三角形, ∴CD=CE=a,∠DCE=45°, ∵四边形ABCD为正方形, ∴CB=CD=a,∠BCD=90°, ∴∠ECF=45°,
∴△CEF为等腰直角三角形, ∴CF=EF=
CE=
a,
在Rt△BEF中,tan∠EBF=即∠EBC=. 故答案为.
==,
【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.
14.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= ﹣1 .
【考点】二次函数图象与几何变换;抛物线与x轴的交点. 【专题】规律型.
【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.
【解答】解:∵y=﹣x(x﹣2)(0≤x≤2), ∴配方可得y=﹣(x﹣1)2+1(0≤x≤2), ∴顶点坐标为(1,1), ∴A1坐标为(2,0) ∵C2由C1旋转得到,
∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0); 照此类推可得,C3顶点坐标为(5,1),A3(6,0); C4顶点坐标为(7,﹣1),A4(8,0); C5顶点坐标为(9,1),A5(10,0); C6顶点坐标为(11,﹣1),A6(12,0); ∴m=﹣1.
故答案为:﹣1.
【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.
三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)
15.计算:22﹣2cos60°+|﹣|+(π﹣3.14)0.
【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 【专题】计算题;实数.
【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.
﹣
【解答】解:原式=﹣2×+2+1
=+2.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
16.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值. 【考点】整式的混合运算—化简求值.
【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可. 【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 =x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2 =﹣4xy+3y2
=﹣y(4x﹣3y). ∵4x=3y, ∴原式=0.
【点评】此题考查整式的化简求值,注意先化简,再代入求得数值即可. 17.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.
【考点】解直角三角形的应用-方向角问题.
【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案. 【解答】解:如图,作AD⊥BC,垂足为D, 由题意得,∠ACD=45°,∠ABD=30°. 设CD=x,在Rt△ACD中,可得AD=x, 在Rt△ABD中,可得BD=又∵BC=20(1+即x+x=20(1+解得:x=20, ∴AC=
x=20
),
x,
),CD+BD=BC,
(海里).
海里.
答:A、C之间的距离为20
【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.
18.列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计) 【考点】分式方程的应用.
【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.
【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,
根据题意,得: =2×, 解得:x=3.2,
经检验:x=3.2是原分式方程的解,且符合题意, 答:A4薄型纸每页的质量为3.2克.
【点评】本题主要考查分式方程的应用,根据题意准确找到相等关系并据此列出方程是解题的关键.
19.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
【考点】平行四边形的判定与性质.
【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可; (2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 【解答】解:(1)∵D、G分别是AB、AC的中点,
共分享92篇相关文档