当前位置:首页 > 2019年山东省临沂市中考数学试卷以及解析版
?AD?BD,
?CD?DH?在?ADH与?BCD中,??ADH??BDC,
?AD?BD???ADH??BCD(SAS),
?AH?BC?4,?H??BCD?90?, ?ACH?30?, ?CH?3AH?43, ?CD?23,
1??ABC的面积?2S?BCD?2??4?23?83,
2故答案为:83.
【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键. 三、解答题:(共63分) 20.(7分)解分式方程:
53?. x?2x【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:5x?3x?6, 解得:x??3,
经检验x??3是分式方程的解.
【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)
第17页(共27页)
78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93
整理上面的数据得到频数分布表和频数分布直方图:
成绩(分) 频数 5 a 78?x?82 82?x?86 86?x?90 11 b 90?x?94 94?x?98 回答下列问题:
2 (1)以上30个数据中,中位数是 86 ;频数分布表中a? ;b? ; (2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.
【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a与b的值即可;
(2)补全直方图即可;
(3)求出样本中游戏学生的百分比,乘以300即可得到结果.
【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a?6,b?6; 故答案为:86;6;6;
(2)补全频数直方图,如图所示:
第18页(共27页)
(3)根据题意得:300?19?190, 30则该校七年级300名学生中,达到优秀等级的人数为190人.
【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.
22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得?CAB?30?,AB?4km,?ABD?105?,求BD的长.
【分析】根据?CAB?30?,AB?4km,可以求得BE的长和?ABE的度数,进而求得?EBD的度数,然后利用勾股定理即可求得BD的长. 【解答】解:作BE?AD于点E, ?CAB?30?,AB?4km, ??ABE?60?,BE?2km, ?ABD?105?, ??EBD?45?, ??EDB?45?, ?BE?DE?2km,
?BD?22?22?22km,
第19页(共27页)
即BD的长是22km.
【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
23.(9分)如图,AB是O的直径,C是O上一点,过点O作OD?AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF. (1)求证:CF是O的切线. (2)若?A?22.5?,求证:AC?DC.
【分析】(1)根据圆周角定理得到?ACB??ACD?90?,根据直角三角形的性质得到求得?AEO??FEC??FCE,根据等腰三角形的性质得到?OCA??OAC,CF?EF?DF,于是得到结论;
(2)根据三角形的内角和得到?OAE??CDE?22.5?,根据等腰三角形的性质得到?CAD??ADC?45?,于是得到结论.
【解答】(1)证明:AB是O的直径,
??ACB??ACD?90?,
点F是ED的中点,
第20页(共27页)
共分享92篇相关文档