云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2018年甘肃省兰州市中考数学试卷-答案

2018年甘肃省兰州市中考数学试卷-答案

  • 62 次阅读
  • 3 次下载
  • 2025/5/6 22:02:13

52?(4x)2?(5?3x)2,

x=0(舍)或

30, 7∵?CEF?45o,?ACB?90o, ∴CE=CF, 设CF=a,

∵∠CEF=∠ACD+∠CDE, ∠CFE=∠B+∠BDF, ∴∠CDE=∠BDF, ∵∠ACD=∠B, ∴△CED∽△BFD, ∴

CEBF, ?CDBDa8?a24, ?,a?303074?10?3?77∴

∴CF?24. 7【解析】(1)根据圆周角定理得:?ACB??BCO??OCA?90o,根据同圆的半径相等和已知相等的角代换可得:?OCD?90o,可得结论;

(2)先根据三角函数计算AC=6,BC=8,证明△CAD∽△BCD,得

ACAD63???,设AD=3x,CD=4x,利用勾BCCD84股定理列方程可得x的值,证明△CED∽△BFD,列比例式可得CF的长.

【考点】切线的判定和性质、相似三角形的判定和性质、勾股定理、锐角三角函数

?9a?3b?4?028.【答案】解:(1)将A(-3,0),B(5,-4)代入得:?,

25a?5b?4??4?解得:a?,b??.

1656∴抛物线的解析式为y?(2)∵AO=3,OC=4, ∴AC=5.

125x?x?4. 66取D(2,0),则AD=AC=5.

13 / 15

由两点间的距离公式可知BD?(5?2)2?(?4?0)2?5. ∵C(0,-4),B(5,-4), ∴BC=5. ∴BD=BC. ∴△ABC≌△ABD, ∴∠CAB=∠BAD, ∴AB平分∠CAO;

(3)如图所示:抛物线的对称轴交x轴与点E,交BC与点F.

抛物线的对称轴为x?∵A(-3,0),B(5,-4), ∴tan?EAB?115,则AE?.

521. 2∵?M'AB?90o. ∴tan∠M'AE=2. ∴M'E=2AE=11, ∴M'(,11)

14 / 15

52同理:tan∠MMF=2. 又∵BF?∴FM=5, ∴M(,?9)

5, 252∴点M的坐标为(,11)(5/2,11)或M(,?9).

【解析】(1)将A(-3,0),B(5,-4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值; (2)先求得AC的长,然后D(2,0),则AD?AC,连接BD,接下来,证明BC?BD,然后依据SSS可证

5252△ABC≌△ABD,接下来,依据全等三角形的性质可得到?CAB??BAD;

(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM'?AB,作BM?AB,分别交抛物线的对称轴与M?、M,依据点A和点B的坐标可得到tan?BAE?1,从而可得到tan?M'AE?2或tan?MBF?2,从而可2得到FM和M'E的长,故此可得到点M'和点M的坐标. 【考点】二次函数的综合应用

15 / 15

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

52?(4x)2?(5?3x)2, x=0(舍)或30, 7∵?CEF?45o,?ACB?90o, ∴CE=CF, 设CF=a, ∵∠CEF=∠ACD+∠CDE, ∠CFE=∠B+∠BDF, ∴∠CDE=∠BDF, ∵∠ACD=∠B, ∴△CED∽△BFD, ∴CEBF, ?CDBDa8?a24, ?,a?303074?10?3?77∴∴CF?24. 7【解析】(1)根据圆周角定理得:?ACB??BCO??OCA?90o,根据同圆的半径相等和已知相等的角代换可得:?OCD?90o,可得结论; (2)先根据三角函数计算AC=6,BC=8,证明△CAD∽△BCD,得ACAD63???,设AD=3x,CD=4x,利用勾BCCD84股定理列方程可得x的值,证明△CED∽△BFD,列比例式可得CF

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com