当前位置:首页 > 概率论与数理统计(复旦大学出版社)第3章习题详解
(2) P{X?1,Y?3}???f(x,y)dydx
3 ???1k(6?x?y)dydx? 8813????1302(3)
P{X?1.5}?x?1.5??f(x,y)dxdy如图a??f(x,y)dxdyD11.5
??(4)
P{X?Y?4}?X?Y?40dx?42127(6?x?y)dy?.832??f(x,y)dxdy如图b??f(x,y)dxdyD224?x
??dx?0212(6?x?y)dy?.83
题5图
6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为
fY(y)=
?5e?5y,y?0,?其他.?0,
求:(1) X与Y的联合分布密度;(2) P{Y≤X}.
题6图
5
【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为
?1?,0?x?0.2,fX(x)??0.2?其他.?0,
而
?5e?5y,y?0,fY(y)??其他.?0,
所以
f(x,y)X,Y独立f (2)
P(Y?X)?X(x)gfY(y)
?1?5y?25e?5y,0?x?0.2且y?0,??5e??0.2??其他.?0,??0,f(x,y)dxdy如图??25e?5ydxdyD0.2x0.2y?x??
??dx?25e-5ydy??(?5e?5x?5)dx000=e-1?0.3679.7.设二维随机变量(X,Y)的联合分布函数为
F(x,y)=
?(1?e?4x)(1?e?2y),x?0,y?0,?其他.?0,
求(X,Y)的联合分布密度. 【解】
?2F(x,y)?8e?(4x?2y),x?0,y?0,f(x,y)????x?y其他.?0,
8.设二维随机变量(X,Y)的概率密度为
f(x,y)=
?4.8y(2?x),0?x?1,0?y?x,?其他.?0,
求边缘概率密度.
6
【解】fX(x)??????f(x,y)dy
fY(y)??????x2???04.8y(2?x)dy?2.4x(2?x),0?x?1,=???其他.?0,??0,f(x,y)dx
?14.8y(2?x)dx?2.4y(3?4y?y2),0?y?1,?=??y??其他.?0,??0,
9.设二维随机变量(X,Y)的概率密度为
f(x,y)=
求边缘概率密度.
【解】f(x)??f(x,y)dy
??X??
题8图 题9图
?e?y,0?x?y,?其他.?0,
fY(y)?????????y?x???xedy?e,x?0,=???其他.?0,??0,
f(x,y)dx
y?y?x???0edx?ye,y?0,=???其他.?0,??0,
题10图
7
10.设二维随机变量(X,Y)的概率密度为
f(x,y)=
?cx2y,x2?y?1,?其他.?0,
(1) 试确定常数c; (2) 求边缘概率密度. 【解】(1) ??????????f(x,y)dxdy如图??f(x,y)dxdyD
1x =?dx?1-1cx2ydy?24c?1.21
得(2)
c?214.
????fX(x)??f(x,y)dy
fY(y)???????212?12124??x2xydy?x(1?x),?1?x?1,??4??8??其他.?0,?0,f(x,y)dx
?75?y212???yxydx?y2,0?y?1,????24?? 其他.?0,?0,11.设随机变量(X,Y)的概率密度为
1,f(x,y)=??0,?y?x,0?x?1,其他.
求条件概率密度fY|X(y|x),fX|Y(x|y).
8
共分享92篇相关文档