当前位置:首页 > 2018年高考题分类汇编之数列与不等式
2018年数学高考分类汇编之数列与不等式
1.【2018年浙江卷】已知A.
B.
成等比数列,且 C.
D.
.若
,则
2.【2018年文北京卷】】“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于单音频率为 A.
B.
C.
D.
,
的前n项和,则使得
.将
的所有元素从小到
.若第一个单音的频率f,则第八个
3.【2018年浙江卷】已知集合大依次排列构成一个数列________.
.记为数列
成立的n的最小值为
4.【2018年浙江卷】已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列 {bn}满足b1=1,数列{(bn+1?bn)an}的前n项和为2n2+n. (Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
5.【2018年天津卷文】设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6. (Ⅰ)求Sn和Tn;
(Ⅱ)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.
1
6.【2018年文北京卷】设(Ⅰ)求(Ⅱ)求
7.【2018年江苏卷】设排列
的一个逆序,排列的通项公式;
.
是等差数列,且.
,对1,2,···,n的一个排列,如果当s 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231, 为1,2,···,n的所有排列中逆序数为k 只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记的全部排列的个数. (1)求(2)求 8.【2018年江苏卷】设(1)设(2)若的取值范围(用 表示). 是首项为,公差为d的等差数列,,若 对,证明:存在 的值; 的表达式(用n表示). 是首项为,公比为q的等比数列. 均成立,并求 均成立,求d的取值范围;,使得 对 [来源:Zxxk.Com]9.【2018年新课标I卷文】已知数列(1)求(2)判断数列(3)求 ; 满足,,设. 是否为等比数列,并说明理由; 的通项公式. 2 10.【2018年全国卷Ⅲ文】等比数列(1)求 的通项公式; 的前项和.若 中,. (2)记为 ,求. 11.【2018年天津卷文】设变量x,y满足约束条件A. 6 B. 19 C. 21 D. 45 12.【2018年文北京卷】设集合A. 对任意实数a, B. 对任意实数a,(2,1) D. 当且仅当 则目标函数的最大值为 则 C. 当且仅当a<0时,(2,1) 时,(2,1) 13.【2018年浙江卷】若___________. 满足约束条件则的最小值是___________,最大值是 14.【2018年天津卷文】已知15.【2018年文北京卷】若 ,y满足16.【2018年江苏卷】在且 ,则 中,角 ,且,则的最小值为_____________. ,则2y? 的最小值是_________. 所对的边分别为 , , 的平分线交 于点D, 的最小值为________. 17.【2018年全国卷Ⅲ文】若变量满足约束条件则的最大值是________. 18.【2018年全国卷II文】若 满足约束条件 则的最大值为__________. 3
共分享92篇相关文档