ÔÆÌ⺣ - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

µ±Ç°Î»ÖãºÊ×Ò³ > ¡¶Ò½Ñ§Í³¼ÆÑ§¡·ÆÚĩģÄ⿼ÊÔÌ⣨һ£©

¡¶Ò½Ñ§Í³¼ÆÑ§¡·ÆÚĩģÄ⿼ÊÔÌ⣨һ£©

  • 62 ´ÎÔĶÁ
  • 3 ´ÎÏÂÔØ
  • 2025/7/2 2:41:20

¾Ý´ËÈÏΪ£¬Åܺó¶¯ÂöѪÑõ·Öѹ·Ö±ðÓëÄêÁä¡¢ÅÜÍê1000Ã×ÓÃʱ³Ê¸ºÏà¹Ø¹ØÏµ£¬ÓëÌåÖØºÍÅÜʱƽ¾ùÂö²«ÊýÎ޹ء££¨6·Ö£©

ÎÊ£º£¨1£©¸Ã×ÊÁÏÓÐÊ²Ã´ÌØµã?

£¨2£©²ÉÓõÄͳ¼Æ·½·¨ÊÇ·ñÕýÈ·?

£¨3£©¸Ã×ÊÁÏÓ¦¸ÃÓúÎÖÖͳ¼Æ·½·¨£¿

9. ijҽʦ¶Ô25Ãû½¡¿µÄÐÐԽ̹¤²â¶¨ÄêÁ䣨age£©¡¢ÌåÖØ(weight)¡¢ÅÜÍê1000Ã×ÓÃʱ(time)¡¢ÅÜʱƽ¾ùÂö²«Êý(pulse)¡¢Åܺó¶¯ÂöѪÑõ·Öѹ(bloodo),²â¶¨½á¹ûºóÒÔÅܺó¶¯ÂöѪÑõ·Öѹ(bloodo)×÷Ó¦±äÁ¿£¬ÄêÁ䣨age£©¡¢ÌåÖØ(weight)¡¢ÅÜÍê1000Ã×ÓÃʱ(time)¡¢ÅÜʱƽ¾ùÂö²«Êý(pulse)Ϊ×Ô±äÁ¿£¬½øÐÐÖ𲽻عé·ÖÎö½á¹ûÈçÏ£¬Çë¸øÓè½âÊÍ¡££¨7·Ö£©

Model 1 2 3

R .673(a) .827(b) .864(c)

Adjusted R Std. Error of

R Square Square the Estimate

.453 .684 .747

.429 .656 .711

.63859 .49571 .45406

ModelSummary

a Predictors: (Constant), AGE£¬b Predictors: (Constant), AGE, TIME£¬c Predictors: (Constant), AGE, TIME, PULSE ANOVA(d) Model

1 Regression

<>

9.379 23

Residual

<>

17.133 24

2

Total

Regression <>

5.406 22

Residual <>

17.133 24

3

Total

Regression <>

4.330 21

Residual <>

17.133 24

Total

a Predictors: (Constant), AGE

.206

.246

.408

Sum of Squares

df Mean Square

F

Sig. .000(a)

7.754 1 7.754 19.014

11.727 2 5.863 23.862 .000(b)

12.803 3 4.268 20.700 .000(c)

b Predictors: (Constant), AGE, TIME

c Predictors: (Constant), AGE, TIME, PULSE

d Dependent Variable: BLOODO

Coefficients(a)

Model Unstandardized Standardized Coefficients Coefficients B Std. Error Beta 1 (Constant) 11.101 1.105 AGE -.101 .023 -.673

2 (Constant) 13.061 .986 AGE -.089 .018 -.598 TIME -.448 .112 -.487 3 (Constant) 8.810 2.068 AGE -.076 .018 -.508 TIME -.534 .109 -.581

PULSE

.024

.011

.278 a Dependent Variable: BLOODO

t

Sig. 10.050 .000 -4.360 .000 13.242 .000 -4.936 .000 -4.021 .001 4.259 .000 -4.307 .000 -4.909 .000 2.285

.033

°¸Àý·ÖÎö¡ªËĸñ±íÈ·ÇиÅÂÊ·¨

¡¾Àý1-5¡¿ Ϊ±È½ÏÖÐÎ÷Ò©ÖÎÁƼ±ÐÔÐ£ÈûµÄÁÆÐ§£¬Ä³Ò½Ê¦½«27Àý¼±ÐÔÐ£Èû»¼ÕßËæ»ú·Ö³ÉÁ½×飬·Ö±ð¸øÓèÖÐÒ©ºÍÎ÷Ò©ÖÎÁÆ£¬½á¹û¼û±í1-4¡£¾­ ¼ìÑ飬µÃÁ¬ÐøÐÔУÕý¦Ö2 =3.134£¬P£¾0.05£¬²îÒìÎÞͳ¼ÆÑ§ÒâÒ壬¹ÊÈÏΪÖÐÎ÷Ò©ÖÎÁƼ±ÐÔÐ£ÈûµÄÁÆÐ§»ù±¾Ïàͬ¡£

±í1-4 Á½ÖÖÒ©ÎïÖÎÁƼ±ÐÔÐ£ÈûµÄÁÆÐ§±È½Ï

Ò© Îï ÖÐ Ò© Î÷ Ò© ºÏ ¼Æ

ÓРЧ 12£¨9.33£©

6£¨8.67£©

ÎÞ Ð§ 2£¨4.67£©

7£¨4.33£©

ºÏ ¼Æ 14 13 27

ÓÐЧÂÊ£¨£¥£©

85.7

46.2 66.7

18 9

¡¾ÎÊÌâ1-5¡¿ £¨1£© ÕâÊÇʲô×ÊÁÏ£¿

£¨2£© ¸Ã×ÊÁÏÊôÓÚºÎÖÖÉè¼Æ·½°¸£¿ £¨3£© ¸Ãҽʦͳ¼Æ·½·¨ÊÇ·ñÕýÈ·£¿ÎªÊ²Ã´£¿ ¡¾·ÖÎö¡¿

(1) ¸Ã×ÊÁÏÊǰ´ÖÐÎ÷Ò©µÄÖÎÁƽá¹û£¨ÓÐЧ¡¢ÎÞЧ£©·ÖÀàµÄ¼ÆÊý×ÊÁÏ¡£ (2) 27Àý»¼ÕßËæ»ú·ÖÅäµ½ÖÐÒ©×éºÍÎ÷Ò©×飬ÊôÓÚÍêÈ«Ëæ»úÉè¼Æ·½°¸¡£ (3) »¼Õß×ÜÀýÊýn=27£¼40£¬¸ÃҽʦÓæÖ2¼ìÑéÊDz»ÕýÈ·µÄ¡£µ±n£¼40»òT£¼1ʱ£¬²»Ò˼ÆËã¦Ö2Öµ£¬Ðè²ÉÓÃËĸñ±íÈ·ÇиÅÂÊ·¨£¨exact probabilities in 2¡Á2 table£©Ö±½Ó¼ÆËã¸ÅÂÊ

°¸Àý·ÖÎö£­¿¨·½¼ìÑ飨һ£©

¡¾Àý1-1¡¿ ijҽʦΪ±È½ÏÖÐÒ©ºÍÎ÷Ò©ÖÎÁÆÎ¸Ñ×µÄÁÆÐ§£¬Ëæ»ú³éÈ¡140ÀýθÑ×»¼Õß·Ö³ÉÖÐÒ©×éºÍÎ÷Ò©×飬½á¹ûÖÐÒ©×éÖÎÁÆ80Àý£¬ÓÐЧ64Àý£¬Î÷Ò©×éÖÎÁÆ60Àý£¬ÓÐЧ35Àý¡£¸Ãҽʦ²ÉÓóÉ×ét¼ìÑ飨ÓÐЧ=1£¬ÎÞЧ=0£©½øÐмÙÉè¼ìÑ飬½á¹ût£½2.848£¬P£½0.005£¬²îÒìÓÐͳ¼ÆÑ§ÒâÒå¼ìÑ飨ÓÐЧ=1£¬ÎÞЧ=0£©½øÐнøÐмÙÉè¼ìÑ飬½á¹ût£½2.848£¬P£½0.005£¬²îÒìÓÐͳ¼ÆÑ§ÒâÒ壬¹ÊÈÏΪÖÐÎ÷Ò©ÖÎÁÆÎ¸Ñ×µÄÁÆÐ§Óвî±ð£¬ÖÐÒ©ÁÆÐ§¸ßÓÚÎ÷Ò©¡£

  • ÊÕ²Ø
  • Î¥¹æ¾Ù±¨
  • °æÈ¨ÈÏÁì
ÏÂÔØÎĵµ10.00 Ôª ¼ÓÈëVIPÃâ·ÑÏÂÔØ
ÍÆ¼öÏÂÔØ
±¾ÎÄ×÷Õߣº...

¹²·ÖÏí92ƪÏà¹ØÎĵµ

Îĵµ¼ò½é£º

¾Ý´ËÈÏΪ£¬Åܺó¶¯ÂöѪÑõ·Öѹ·Ö±ðÓëÄêÁä¡¢ÅÜÍê1000Ã×ÓÃʱ³Ê¸ºÏà¹Ø¹ØÏµ£¬ÓëÌåÖØºÍÅÜʱƽ¾ùÂö²«ÊýÎ޹ء££¨6·Ö£© ÎÊ£º£¨1£©¸Ã×ÊÁÏÓÐÊ²Ã´ÌØµã? £¨2£©²ÉÓõÄͳ¼Æ·½·¨ÊÇ·ñÕýÈ·? £¨3£©¸Ã×ÊÁÏÓ¦¸ÃÓúÎÖÖͳ¼Æ·½·¨£¿ 9. ijҽʦ¶Ô25Ãû½¡¿µÄÐÐԽ̹¤²â¶¨ÄêÁ䣨age£©¡¢ÌåÖØ(weight)¡¢ÅÜÍê1000Ã×ÓÃʱ(time)¡¢ÅÜʱƽ¾ùÂö²«Êý(pulse)¡¢Åܺó¶¯ÂöѪÑõ·Öѹ(bloodo),²â¶¨½á¹ûºóÒÔÅܺó¶¯ÂöѪÑõ·Öѹ(bloodo)×÷Ó¦±äÁ¿£¬ÄêÁ䣨age£©¡¢ÌåÖØ(weight)¡¢ÅÜÍê1000Ã×ÓÃʱ(time)¡¢ÅÜʱƽ¾ùÂö²«Êý(pulse)Ϊ×Ô±äÁ¿£¬½øÐÐÖ𲽻عé·ÖÎö½á¹ûÈçÏ£¬Çë¸øÓè½âÊÍ¡££¨7·Ö£© Model 1 2 3

¡Á ÓοͿì½ÝÏÂÔØÍ¨µÀ£¨ÏÂÔØºó¿ÉÒÔ×ÔÓɸ´ÖƺÍÅŰ棩
µ¥Æª¸¶·ÑÏÂÔØ
ÏÞÊ±ÌØ¼Û£º10 Ôª/·Ý Ô­¼Û:20Ôª
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
×¢£ºÏÂÔØÎĵµÓпÉÄÜ¡°Ö»ÓÐĿ¼»òÕßÄÚÈݲ»È«¡±µÈÇé¿ö£¬ÇëÏÂÔØÖ®Ç°×¢Òâ±æ±ð£¬Èç¹ûÄúÒѸ¶·ÑÇÒÎÞ·¨ÏÂÔØ»òÄÚÈÝÓÐÎÊÌ⣬ÇëÁªÏµÎÒÃÇЭÖúÄã´¦Àí¡£
΢ÐÅ£ºfanwen365 QQ£º370150219
Copyright © ÔÆÌ⺣ All Rights Reserved. ËÕICP±¸16052595ºÅ-3 ÍøÕ¾µØÍ¼ ¿Í·þQQ£º370150219 ÓÊÏ䣺370150219@qq.com