µ±Ç°Î»ÖãºÊ×Ò³ > ¡¶Ò½Ñ§Í³¼ÆÑ§¡·ÆÚĩģÄ⿼ÊÔÌ⣨һ£©
¾Ý´ËÈÏΪ£¬Åܺó¶¯ÂöѪÑõ·Öѹ·Ö±ðÓëÄêÁä¡¢ÅÜÍê1000Ã×ÓÃʱ³Ê¸ºÏà¹Ø¹ØÏµ£¬ÓëÌåÖØºÍÅÜʱƽ¾ùÂö²«ÊýÎ޹ء££¨6·Ö£©
ÎÊ£º£¨1£©¸Ã×ÊÁÏÓÐÊ²Ã´ÌØµã?
£¨2£©²ÉÓõÄͳ¼Æ·½·¨ÊÇ·ñÕýÈ·?
£¨3£©¸Ã×ÊÁÏÓ¦¸ÃÓúÎÖÖͳ¼Æ·½·¨£¿
9. ijҽʦ¶Ô25Ãû½¡¿µÄÐÐԽ̹¤²â¶¨ÄêÁ䣨age£©¡¢ÌåÖØ(weight)¡¢ÅÜÍê1000Ã×ÓÃʱ(time)¡¢ÅÜʱƽ¾ùÂö²«Êý(pulse)¡¢Åܺó¶¯ÂöѪÑõ·Öѹ(bloodo),²â¶¨½á¹ûºóÒÔÅܺó¶¯ÂöѪÑõ·Öѹ(bloodo)×÷Ó¦±äÁ¿£¬ÄêÁ䣨age£©¡¢ÌåÖØ(weight)¡¢ÅÜÍê1000Ã×ÓÃʱ(time)¡¢ÅÜʱƽ¾ùÂö²«Êý(pulse)Ϊ×Ô±äÁ¿£¬½øÐÐÖ𲽻عé·ÖÎö½á¹ûÈçÏ£¬Çë¸øÓè½âÊÍ¡££¨7·Ö£©
Model 1 2 3
R .673(a) .827(b) .864(c)
Adjusted R Std. Error of
R Square Square the Estimate
.453 .684 .747
.429 .656 .711
.63859 .49571 .45406
ModelSummary
a Predictors: (Constant), AGE£¬b Predictors: (Constant), AGE, TIME£¬c Predictors: (Constant), AGE, TIME, PULSE ANOVA(d) Model
1 Regression
<>
9.379 23
Residual
<>
17.133 24
2
Total
Regression <>
5.406 22
Residual <>
17.133 24
3
Total
Regression <>
4.330 21
Residual <>
17.133 24
Total
a Predictors: (Constant), AGE
.206
.246
.408
Sum of Squares
df Mean Square
F
Sig. .000(a)
7.754 1 7.754 19.014
11.727 2 5.863 23.862 .000(b)
12.803 3 4.268 20.700 .000(c)
b Predictors: (Constant), AGE, TIME
c Predictors: (Constant), AGE, TIME, PULSE
d Dependent Variable: BLOODO
Coefficients(a)
Model Unstandardized Standardized Coefficients Coefficients B Std. Error Beta 1 (Constant) 11.101 1.105 AGE -.101 .023 -.673
2 (Constant) 13.061 .986 AGE -.089 .018 -.598 TIME -.448 .112 -.487 3 (Constant) 8.810 2.068 AGE -.076 .018 -.508 TIME -.534 .109 -.581
PULSE
.024
.011
.278 a Dependent Variable: BLOODO
t
Sig. 10.050 .000 -4.360 .000 13.242 .000 -4.936 .000 -4.021 .001 4.259 .000 -4.307 .000 -4.909 .000 2.285
.033
°¸Àý·ÖÎö¡ªËĸñ±íÈ·ÇиÅÂÊ·¨
¡¾Àý1-5¡¿ Ϊ±È½ÏÖÐÎ÷Ò©ÖÎÁƼ±ÐÔÐ£ÈûµÄÁÆÐ§£¬Ä³Ò½Ê¦½«27Àý¼±ÐÔÐ£Èû»¼ÕßËæ»ú·Ö³ÉÁ½×飬·Ö±ð¸øÓèÖÐÒ©ºÍÎ÷Ò©ÖÎÁÆ£¬½á¹û¼û±í1-4¡£¾ ¼ìÑ飬µÃÁ¬ÐøÐÔУÕý¦Ö2 =3.134£¬P£¾0.05£¬²îÒìÎÞͳ¼ÆÑ§ÒâÒ壬¹ÊÈÏΪÖÐÎ÷Ò©ÖÎÁƼ±ÐÔÐ£ÈûµÄÁÆÐ§»ù±¾Ïàͬ¡£
±í1-4 Á½ÖÖÒ©ÎïÖÎÁƼ±ÐÔÐ£ÈûµÄÁÆÐ§±È½Ï
Ò© Îï ÖÐ Ò© Î÷ Ò© ºÏ ¼Æ
ÓРЧ 12£¨9.33£©
6£¨8.67£©
ÎÞ Ð§ 2£¨4.67£©
7£¨4.33£©
ºÏ ¼Æ 14 13 27
ÓÐЧÂÊ£¨£¥£©
85.7
46.2 66.7
18 9
¡¾ÎÊÌâ1-5¡¿ £¨1£© ÕâÊÇʲô×ÊÁÏ£¿
£¨2£© ¸Ã×ÊÁÏÊôÓÚºÎÖÖÉè¼Æ·½°¸£¿ £¨3£© ¸Ãҽʦͳ¼Æ·½·¨ÊÇ·ñÕýÈ·£¿ÎªÊ²Ã´£¿ ¡¾·ÖÎö¡¿
(1) ¸Ã×ÊÁÏÊǰ´ÖÐÎ÷Ò©µÄÖÎÁƽá¹û£¨ÓÐЧ¡¢ÎÞЧ£©·ÖÀàµÄ¼ÆÊý×ÊÁÏ¡£ (2) 27Àý»¼ÕßËæ»ú·ÖÅäµ½ÖÐÒ©×éºÍÎ÷Ò©×飬ÊôÓÚÍêÈ«Ëæ»úÉè¼Æ·½°¸¡£ (3) »¼Õß×ÜÀýÊýn=27£¼40£¬¸ÃҽʦÓæÖ2¼ìÑéÊDz»ÕýÈ·µÄ¡£µ±n£¼40»òT£¼1ʱ£¬²»Ò˼ÆËã¦Ö2Öµ£¬Ðè²ÉÓÃËĸñ±íÈ·ÇиÅÂÊ·¨£¨exact probabilities in 2¡Á2 table£©Ö±½Ó¼ÆËã¸ÅÂÊ
°¸Àý·ÖÎö£¿¨·½¼ìÑ飨һ£©
¡¾Àý1-1¡¿ ijҽʦΪ±È½ÏÖÐÒ©ºÍÎ÷Ò©ÖÎÁÆÎ¸Ñ×µÄÁÆÐ§£¬Ëæ»ú³éÈ¡140ÀýθÑ×»¼Õß·Ö³ÉÖÐÒ©×éºÍÎ÷Ò©×飬½á¹ûÖÐÒ©×éÖÎÁÆ80Àý£¬ÓÐЧ64Àý£¬Î÷Ò©×éÖÎÁÆ60Àý£¬ÓÐЧ35Àý¡£¸Ãҽʦ²ÉÓóÉ×ét¼ìÑ飨ÓÐЧ=1£¬ÎÞЧ=0£©½øÐмÙÉè¼ìÑ飬½á¹ût£½2.848£¬P£½0.005£¬²îÒìÓÐͳ¼ÆÑ§ÒâÒå¼ìÑ飨ÓÐЧ=1£¬ÎÞЧ=0£©½øÐнøÐмÙÉè¼ìÑ飬½á¹ût£½2.848£¬P£½0.005£¬²îÒìÓÐͳ¼ÆÑ§ÒâÒ壬¹ÊÈÏΪÖÐÎ÷Ò©ÖÎÁÆÎ¸Ñ×µÄÁÆÐ§Óвî±ð£¬ÖÐÒ©ÁÆÐ§¸ßÓÚÎ÷Ò©¡£
¹²·ÖÏí92ƪÏà¹ØÎĵµ