当前位置:首页 > 2013年温州中考数学模拟试卷
∴S3﹣S4=π, 故选D. 点评: 本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值. 二、填空题(本题有6小题,每小题5分,共30分)
2
11.(5分)(2013?温州)因式分解:m﹣5m= m(m﹣5) . 考点: 因式分解-提公因式法. 分析: 先确定公因式m,然后提取分解. 2解答: 解:m﹣5m=m(m﹣5). 故答案为:m(m﹣5). 点评: 此题考查了提公因式法分解因式,关键是确定公因式m. 12.(5分)(2013?温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是 8 分. 考点: 算术平均数. 分析: 根据算术平均数的计算公式,先求出这5个数的和,再除以5即可. 解答: 解:根据题意得: (8.2+8.3+7.8+7.7+8.0)÷5=8(分 ); 故答案为:8. 点评: 此题考查了算术平均数,用到的知识点是算术平均数的计算公式,熟记公式是解决本题的关键. 13.(5分)(2013?温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3= 110 度.
考点: 平行线的性质;三角形内角和定理. 分析: 根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答. 解答: 解:∵a∥b,∠1=40°, ∴∠4=∠1=40°, ∴∠3=∠2+∠4=70°+40°=110°. 故答案为:110. 第 5 页 共 16 页
点评: 本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键. 14.(5分)(2013?温州)方程x﹣2x﹣1=0的解是 x1=1+ 2
,x2=1﹣ .
考点: 解一元二次方程-配方法. 分析: 首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案. 2解答: 解:∵x﹣2x﹣1=0, 2∴x﹣2x=1, 2∴x﹣2x+1=2, 2∴(x﹣1)=2, ∴x=1±, ∴原方程的解为:x1=1+,x2=1﹣. 故答案为:x1=1+,x2=1﹣. 点评: 此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 15.(5分)(2013?温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是 (1,3) .
考点: 一次函数图象上点的坐标特征;坐标与图形变化-对称. 分析: 根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得AB′=B′C′,然后写出点C′的坐标即可. 解答: 解:∵A(﹣2,0),B(﹣1,0), ∴AO=2,OB=1, ∵△A′B′C′和△ABC关于y轴对称, 第 6 页 共 16 页
∴OB=OB′=1, ∴AB′=AO+OB′=2+1=3, ∵直线y=x+b经过点A,C′, ∴AB′=B′C′=3, ∴点C′的坐标为(1,3). 故答案为:(1,3). 点评: 本题考查了一次函数图象上点的坐标特征,坐标与图形变化﹣对称,根据直线解析式的k值等于1得到AB′=B′C′是解本题的关键. 16.(5分)(2013?温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是 18cm、31cm .
考点: 圆的综合题 分析: 如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′,设圆孔半径为r.在Rt△KBG中,根据勾股定理,得r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.则根据图中相关线段间的和差关系求得CN=QG﹣QN′=44﹣26=18(cm),AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm). 解答: 解:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′. 设圆孔半径为r. 在Rt△KBG中,根据勾股定理,得 222222BG+KG=BK,即(130﹣50)+(44+r)=100, 解得,r=16(cm). 根据题意知,圆心O在矩形EFGH的对角线上,则 KN′=AB=42cm,OM′=KM′+r=CB=65cm. ∴QN′=KN′﹣KQ=42﹣16=26(cm),KM′=49(cm), ∴CN=QG﹣QN′=44﹣26=18(cm), ∴AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm), 综上所述,CN,AM的长分别是18cm、31cm. 故填:18cm、31cm. 第 7 页 共 16 页
点评: 本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值. 三、解答题(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程) 17.(10分)(2013?温州)(1)计算:
+(
)+()
0
(2)化简:(1+a)(1﹣a)+a(a﹣3) 考点: 整式的混合运算;实数的运算;零指数幂. 专题: 计算题. 分析: (1)原式第一项化为最简二次根式,第二项去括号,最后一项利用零指数幂法则计算,合并即可得到结果; (2)原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果. 解答: 解:(1)原式=2+﹣1+1=3; 22(2)原式=1﹣a+a﹣3a=1﹣3a. 点评: 此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 18.(8分)(2013?温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E. (1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
考点: 全等三角形的判定与性质;角平分线的性质;含30度角的直角三角形. 分析: (1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可; (2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可. 解答: (1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°, ∴CD=ED,∠DEA=∠C=90°, ∵在Rt△ACD和Rt△AED中 第 8 页 共 16 页
共分享92篇相关文档