当前位置:首页 > 概率论与数理统计 徐雅静编
1
第二章
2
一、填空题:
1. P?X?x?,F(x2)?F(x1)
kkp(1?p)n?k,k = 0,1,…,n 2. P{X?k}?Cn3. P{X?k}?4.
1 1???kk!e??,??0为参数,k = 0,1,…
?1, a?x?b 5. f(x)???b?a? 其它?0, 6. f(x)?12??e?(x??)22?2,???x???
1?27. ?(x)?e,???x???
2?8. ?(9.
b??x2?)??(a???)
X -1 pi 0.4 1 0.4 2 0.2 分析:由题意,该随机变量为离散型随机变量,根据离散型随机变量的分布函数求法,可观察出随机变量的取值及概率。 10.
9 6412-?分析:每次观察下基本结果“X≤1/2”出现的概率为?取值的观察可看作是3重伯努利实验,所以
f(x)dx??22xdx?011,而本题对随机变量X4119P?Y?2??C32()2(1?)3?2?
44642.2?1?X?12.2?1??2.2??P????()?0.7257, 11. P?X ?222?? 1
2
5.8?1?1.6?1??1.6?1X?15.8?1?P??1.6?X ?5.8??P?????()??()? 22?22?2??(2.4)??(?1.3)??(2.4)??(1.3)?1?0.8950,同理,P{| X | ? 3.5} =0.8822.
y?1?y?1??F(). 12. G(y)?P?Y?3X?1?y??P?X??3?3?13.
13,利用全概率公式来求解: 48P?Y?2??P?Y?2X?1?P?X?1??P?Y?2X?2?P?X?2? ?P?Y?2X?3?P?X?3??P?Y?2X?4?P?X?4? ?0?111111113???????.424344448二、单项选择题:
1. B,由概率密度是偶函数即关于纵轴对称,容易推导
F(-a)=?f(x)dx??f(x)dx-?????x????a00-a101af(x)dx?-?f(x)dx???f(x)dx
2-a202. B,只有B的结果满足F(??)?limF(x)?1 3. C,根据分布函数和概率密度的性质容易验证
?2,X?24. D,Y??,可以看出Y不超过2,所以
?X,X?2?1, y?2?1, y?2?1, y?2??x?yFY(y)?P?Y?y?????y1??,??0, ????P?X?y?,y?2??0edx,y?2??1?e,y?2??可以看出,分布函数只有一个间断点.
5. C, 事件的概率可看作为事件A(前三次独立重复射击命中一次)与事件B(第四次命中)同
时发生的概率,即
1p(1?p)3?2?p. p?P(AB)?P(A)P(B)?C3三、解答题
(A)
1.(1)
2
3 X pi
1 2 3 4 5 6 11 369 367 365 363 361 36分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中
11?6-1(这里C2至少有一点数为1,其余一个1至6点均可,共有C2指任选某次点数为1,1?6多算了一次)6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为C211C2?6-1C2?5?111??或C?5?1种,故P?X?1??,其他结果类似可得. 36363612(2)
x?1? 0 ,?P{X?1},1?x?2??P{X?1}?P{X?2},2?x?3?F(x)??P{X?1}?P{X?2}?P{X?3}, 3?x?4
?P{X?1}?P{X?2}?P{X?3}?P{X?4}, 4?x?5??P{X?1}?P{X?2}?P{X?3}?P{X?4}?P{X?5},5?x?6?1 ,? x?6 x?1? 0 ,?11?,1?x?236??202?x?3?,?36?27 ??, 3?x?4
?36?32 4?x?5?36,??35,5?x?6?36? x?6?1 ,2.
X1 -9 1251269p
1126 3
4
i 21?. 5126C10注意,这里X指的是赢钱数,X取0-1或100-1,显然P?X?99??3.?ak?0??kk!?ae???1,所以a?e??.
?0,x?-1?1?0,x?-1?,?1?x?2?P{X??1},?1?x?2??4??4.(1) f(x)??,
P{X??1}?P{X?2},2?x?33??,2?x?3??4?1,x?3?1,x?3?1?15?1??3(2) P?X???p?X??1??、 P??X???P?X?2??、
2?42?2??2 P?2?X?3??P??X?2???X?3???P?X?2??P?X?3??3; 4?1?1?2?1?2i?2?25.(1) P?X?偶数??12?14???1???limi???12222i1??22?(2) P?X?5??1?P?X?4??1?151?, 1616123??1?i??1??3?????2????1.
171?32???????1, ?3?????(3) P?X?3的倍数i?1?1?lim3ii??26.(1) X~P?0.5t??P?1.5? P?X?0??e?1.5. (2) 0.5t?2.5 P?x?1??1?P?x?0??1?e?2.5.
0.2? 7.解:设射击的次数为X,由题意知X~B?400,kP?X?2??1?P?X?1??1??k?0C4000.02k0.98400?k18K?8?1??k?0e?1?0.28?0.9972,其中8=400×0.02.
k!10.3? 8.解:设X为事件A在5次独立重复实验中出现的次数,X~B?5,则指示灯发出信号的概率
01p?P?X?3??1?P?X?3??1?(C50.300.75?C50.310.74?C520.320.73)
4
共分享92篇相关文档