当前位置:首页 > 2020届深圳市中考数学模拟试卷(有答案)(2)(Word版)(加精)
////
【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.
【解答】解:设大房间有x个,小房间有y个,由题意得:
,
故选:A.
【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.
10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是( )
A.3 B. C.6 D.
【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.
【解答】解:设三角板与圆的切点为C,连接OA、OB,
由切线长定理知AB=AC=3,OA平分∠BAC, ∴∠OAB=60°,
在Rt△ABO中,OB=ABtan∠OAB=3∴光盘的直径为6故选:D.
【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.
11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是( )
,
,
////
////
A.abc>0 B.2a+b<0 C.3a+c<0
D.ax2+bx+c﹣3=0有两个不相等的实数根
【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣与y轴的交点位置得到c>0,进而解答即可.
【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣线与y轴的交点位置得到c>0, A、abc<0,错误; B、2a+b>0,错误; C、3a+c<0,正确;
D、ax2+bx+c﹣3=0无实数根,错误; 故选:C.
【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
12.(3.00分)如图,A、B是函数y=法正确的是( )
①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16
上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说
,得到b>0,由抛物,得到b>0,由抛物线
////
////
A.①③ B.②③ C.②④ D.③④
【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论. 【解答】解:∵点P是动点, ∴BP与AP不一定相等,
∴△BOP与△AOP不一定全等,故①不正确; 设P(m,n), ∴BP∥y轴, ∴B(m,∴BP=|
), ﹣n|,
﹣n|×m=|12﹣mn|
∴S△BOP=|∵PA∥x轴, ∴A(∴AP=|
,n), ﹣m|,
﹣m|×n=|12﹣mn|,
∴S△AOP=|
∴S△AOP=S△BOP,故②正确;
如图,过点P作PF⊥OA于F,PE⊥OB于E, ∴S△AOP=OA×PF,S△BOP=OB×PE, ∵S△AOP=S△BOP, ∴OB×PE=OA×PE, ∵OA=OB, ∴PE=PF,
////
////
∵PE⊥OB,PF⊥OA,
∴OP是∠AOB的平分线,故③正确;
如图1,延长BP交x轴于N,延长AP交y轴于M, ∴AM⊥y轴,BN⊥x轴, ∴四边形OMPN是矩形, ∵点A,B在双曲线y=∴S△AMO=S△BNO=6, ∵S△BOP=4, ∴S△PMO=S△PNO=2, ∴S矩形OMPN=4, ∴mn=4, ∴m=, ∴BP=|
﹣n|=|3n﹣n|=2|n|,AP=|
﹣m|=
,
上,
∴S△APB=AP×BP=×2|n|×∴正确的有②③, 故选:B.
=8,故④错误;
【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.
////
共分享92篇相关文档