云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2019届高考数学二轮复习以不变应万变--定点定直线问题学案(全国通用)

2019届高考数学二轮复习以不变应万变--定点定直线问题学案(全国通用)

  • 62 次阅读
  • 3 次下载
  • 2025/7/9 5:59:00

(1)由的焦点为的顶点,得的焦点 , .

令的方程为,因为在上,所以.

于是由由直线令点

解得, ,所以的方程为.

与椭圆交于、两点,知、关于原点对称,所以

,则,

, .

于是由, ,得

即两式相乘得

又因为点代入当当

在上,所以,即中,得

时,得时,则点

; 或

,此时

,也满足方程

若点与点重合,即时,由解得或.

若点与点重合时,同理可得或.

综上,点的轨迹是椭圆除去四个点, , , ,其方程为

(, ).

(2)因为点到直线 的距离, ,

所以的面积

.

当且仅当,即或 ,

此时点的坐标为【点睛】

或.

(1)本题主要考查点的轨迹方程的求法,考查圆锥曲线中的面积的最值问题,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)解答本题的关键有两点,其一是化简

其二是求

类型二 圆锥曲线中的定直线问题

的最大值.

【例4】【黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(十一)】已知点与轴交于点,动点到

两点的距离之比为2.

,直线

(1)求动点的轨迹的方程; (2)设与轴交于三点共线. 【答案】(1)【解析】

;(2)证明见解析.

两点,是直线上一点,且点不在上,直线

分别与交于另一点

,证明:

【详解】

(1)设点化简得

,依题意,,即曲线的方程为

. , .

(2)证明:由(1)知曲线的方程为令

,不妨设

设则直线

,的方程为

, ,

由得,

所以直线

的方程为

,即

,.

所以【点睛】

本题主要考查轨迹方程的求解,三点共线的证明方法等知识,意在考查学生的转化能力和计算求解能力. 【例5】【湖北省荆州市荆州中学2018届普通高等学校招生全国统一考试】有些事,有些人会永远留在脑海,不会忘记,不会褪色.其实没什么放不下的,只是会觉得,付出了这么多时间,却始终没有被感动 已知抛物线点.

(1)求证:、、三点共线;

(2)若直线过抛物线的焦点且与抛物线交于、两点,点到轴的距离为,点到轴的距离为,求

的最小值.

,且

三点中恰有两点在抛物线上,另一点是抛物线的焦

,所以

三点共线.

【答案】(1)见解析;(2)8 【解析】 【分析】

⑴先根据三点坐标判定三点与抛物线的位置,再确定三点坐标,利用直线的斜率相等判定三点共线 ⑵设出直线方程,联立直线和抛物线方程,得到关于的一元二次方程,利用根与系数的关系,基本不等式进行求解

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(1)由的焦点为的顶点,得的焦点 , . 令的方程为,因为在上,所以. 于是由由直线令点, 解得, ,所以的方程为. . 与椭圆交于、两点,知、关于原点对称,所以,则, , . , 于是由, ,得 即两式相乘得 . 又因为点代入当当在上,所以,即中,得, . 时,得时,则点; 或,此时或,也满足方程. 若点与点重合,即时,由解得或. 若点与点重合时,同理可得或. 综上,点的轨迹是椭圆除去四个点, , , ,其方

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com