当前位置:首页 > 极限部分(第一讲)
第一讲 极限与连续
2n?1因为 ??limn??(n?1)!2n=lim2n?1?0?1,
x??(n)!?所以无穷级数?n?12nn!收敛,从而极限limn??2nn!?0.
5.利用数列极限与函数极限等值求极限
n例9.若a,b,c?0,试求极限lim(n??a?nb?3nc).
nn解:lim(n??a?nb?3ncx)=lim(x???na?xb?3xc)
x111111ln(lim)x???ax?bx?cx31x)?ln3x???e=
limxln(ax?bx?cx31=e (应用罗必塔法则)
11alimx???xlna?bxlnb?cxlnc111ax=en?bx?cx1?2xnn?(?1x2)1=ec)?n33lnabc,
于是 lim(n??a?b?3abc.
对于数列极限的求极限时,若要使用罗必塔法则,则要转化为相应的函数后再使用.
题型二、函数的极限的计算
1.带有根式函数的极限: 1)有理化去掉根号; 2)利用等价无穷小代换 例1.求极限lim1?x?1?x?31?x1?xx?03
2322解:原式?limx?0(1?x?(1?x?21?x)(1?x?31?x)(3(1?x)?1?x)((1?x)?21?x?1?x?23(1?x))(1?x))231?x)(1?x?3323
3?limx?0(3(1?x)?1?x?2(1?x?(1?x))1?x?1?x3?? (分离一部分出来) 1?x?1?x21?x)3 5
第一讲 极限与连续
例2.求极限limx?0(ex2?1)(1?x?1?x?2)x2 [ln(1?x)?ln(1?x)]sin1?x22解:因为当x?0时,ex2x2?1?x,ln(1?x)?ln(1?x)?ln(1?x)??x,
2sin1?x?x21?x2?x,
2所以原式=limx?0x(1?x?21?x?2)2?x?x=?limx?01?x?x21?x?2
1=?limx?021?x?2x121?x=?1414limx?01?x?1?x2 x1?x=?14limx?021?x?(1?x)x(1?x?1?x)3=.(分离一部分极限存在的因子)
(1?x?x例3.求极限limx?02)e?x3x1?x (直接用罗必塔法则太烦)
x2解:分子:(1?x?x22)e?xxx1?x23?(1?x?2x)e?1?(1?x?1)
x32x3(1?x?因为极限:limx?023)e?1xe(1?x?=limx?02?e?x)x
=lim?1?x?e3x2?x=limx?01?e6x?x?limx?0e?xx?06?16,
1而极限:limx?01?x?1xx233=lim2x?0x33x?12,
(1?x?于是limx?02)e?x3x1?x3=
16?12??13.
2.带有变限积分的极限的未定式:含有变限积分的极限,一般使用洛必达法则,同时也注意与其它方法的结合. 例4.求极限limx?0?x0sin(xt)dtx52
解:令xt?u,则
6
第一讲 极限与连续
limx?0?x0sin(xt)dtx52=limx?0?x02sin(u)x452dux =lim?x02sin(u)dux62x?0
=limx?02xsinx6x54=lim3x?01sinxx4?13.
3.幂指函数的极限:
11)lim(1?x)x=lim(1?x??x?01x)?e
x2)利用罗必塔法则: y?u(x)例5.求极限 lim(x???v(x)?evx()ulxn,(u(x)0?()
2?arctanx)
2xln(lim2xln(x????arctanx)1x解:lim(x???2?xarctanx)= lime?arxctanx???=e)
?lim1 =ex???arctanx1?x?x22?e?2?.
n4. 利用泰勒公式求极限:一般地,当分母(或分子)为x时,可考虑将分子(或分母)用泰勒公式展开到x进行计算,这样往往比较简便.
常用五种函数在x0?0处的泰勒公式:
xn①e?1?x?x22!13!12!?x33!???xnn!?o(x).
n②sinx?x?x?315!14!x???(?1)5n?1x2n?1(2n?1)!x2n??(x2n).
③cosx?1?x?2x???(?1)4n(2n)!??(x2n)
④ln(1?x)?x?12x2?13x???(?1)3n?1xnn??(x).
n⑤(1?x)m?1?mx?m(m?1)2!x2???m(m?1)?(m?n?1)n!xn??(x).
n 7
第一讲 极限与连续
例6. 求极限limx?0ex2?1?sinxx242
12!解:因为e方次)
x2?1?1?x?12!x??(x)?1=x?442x??(x)(展开到与分母同
44sinx?212(1?cosx)?2124[1?(1?12!(2x)?214!(2x)??(x))]
44?x?13x??(x),
4于是,limx?0ex2?1?sinxx42(x??limx?0212!x??(x))?(x?x444213x??(x))44
(?limx?012?13)x??(x)x444?56?limx?0?(x)x44=
56.
例7.(98,3分)limx?01?x?x21?x?2 解1 【 分析 】 本题为“
1原式?limx?000”型未定式,可直接用洛必塔法则求解.
121?x?2x21?x?limx?01?x?1?x
4x1?x?1?x?1121?x?14limx?01?x?x1?x?14limx?021?x?1
?1?11?1??????? 4?22?42解2 考虑到分母为x,利用泰勒公式将分子中1?x和1?x展开到x的二次幂,有
1?原式?limx?012x?18x??(x)?1?x222212x?18x??(x)?222
?1?(x)?1?lim?????. ?2x?0x4?4? 8
共分享92篇相关文档