ÔÆÌ⺣ - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

µ±Ç°Î»ÖãºÊ×Ò³ > ¿¼µã11 µ¼ÊýÔÚÑо¿º¯ÊýÖеÄÓ¦ÓÃÓëÉú»îÖеÄÓÅ»¯ÎÊÌâ¾ÙÀý

¿¼µã11 µ¼ÊýÔÚÑо¿º¯ÊýÖеÄÓ¦ÓÃÓëÉú»îÖеÄÓÅ»¯ÎÊÌâ¾ÙÀý

  • 62 ´ÎÔĶÁ
  • 3 ´ÎÏÂÔØ
  • 2025/5/1 1:48:11

Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ

1f?(x)?4ex(x?2)?2x?4?4(x?2)(ex?). 2Áîf?(x)?0£¬µÃx??ln2»òx??2. ´Ó¶øµ±x?(??,?2)?(?ln2,??)ʱ£¬f?(x)?0£» µ±x?(?2,?ln2)ʱ£¬f?(x)?0£» ¹Êf(x)ÔÚ(??,?2)£¬(?ln2,??)µ¥µ÷µÝÔö£¬ÔÚx?(?2,?ln2)µ¥µ÷µÝ¼õ. µ±x??2ʱ£¬º¯Êýf(x)È¡µÃ¼«´óÖµ£¬¼«´óֵΪf(?2)?4(1?e?2)

?x2?2x?a,x?0,36.£¨2013¡¤ËÄ´¨¸ß¿¼Àí¿Æ¡¤£Ô21£©ÒÑÖªº¯Êýf(x)??ÆäÖÐaÊÇʵ

?lnx,x?0,Êý£®ÉèA(x1,f(x1))£¬B(x2,f(x2))Ϊ¸Ãº¯ÊýͼÏóÉϵÄÁ½µã£¬ÇÒx1?x2£® £¨¢ñ£©Ö¸³öº¯Êýf(x)µÄµ¥µ÷Çø¼ä£»

£¨¢ò£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇÒx2?0£¬Çóx2?x1µÄ×îСֵ£»

£¨¢ó£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏ£¬ÇóaµÄȡֵ·¶Î§£® ¡¾½âÌâÖ¸ÄÏ¡¿ÔÚÇó½â¹ý³ÌÖУ¬Ê×ÏÈÐèÒª°ÑÎÕº¯ÊýµÄ½âÎöʽ¼°¶¨ÒåÓò£¬½áºÏ¸÷¶Îº¯ÊýµÄÌØÕ÷È·¶¨Æäµ¥µ÷Çø¼ä£¬ÔÚºóÐøµÄÇó½â¹ý³ÌÖУ¬ÐèÒªÊ×ÏÈÇó½âº¯Êý

f(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßµÄбÂÊ£¬½áºÏÒÑÖªÇó½âx2?x1µÄ×îСֵ£¬ÔÚµÚ

£¨¢ó£©ÎÊÖУ¬Ó¦×ÅÖØ·ÖÎöº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏµÃµ½µÄÐÅÏ¢. ¡¾½âÎö¡¿(¢ñ)º¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼äΪ(??,?1), µ¥µ÷µÝÔöÇø¼äΪ(?1,0),(0,+?).

(¢ò)Óɵ¼ÊýµÄ¼¸ºÎÒâÒå¿ÉÖª,µãA´¦µÄÇÐÏßбÂÊΪf ?(x1),µãB´¦µÄÇÐÏßбÂÊΪf ?(x2),

ËùÒÔµ±µãA´¦µÄÇÐÏßÓëµãB´¦µÄÇÐÏß´¹Ö±Ê±,ÓÐf ?(x1)f ?(x2)=?1. µ±x<0ʱ,f ?(x)=2x+2

ÒòΪx10.

Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ

1

Òò´Ëx2?x1=[?(2x1+2)+ 2x2+2]?[?(2x1+2)](2x2+2)=1,

231

µ±ÇÒ½öµ±?(2x1+2)= 2x2+2=1¼´x1=?,x2=?ʱµÈºÅ³ÉÁ¢.

22

ËùÒÔ,º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïഹֱʱ,Çóx2?x1µÄ×îСֵΪ1.

(¢ó)µ±x1x1>0ʱ, f ?(x1)?f ?(x2), ËùÒÔx1<0

µ±x1<0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x1,f(x1))´¦µÄÇÐÏß·½³ÌΪ

y?(x12+2x1+a)=(2x1+2)(x?x1),

¼´y=(2x1+2)x?x12+a.

µ±x2>0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x2,f(x2))´¦µÄÇÐÏß·½³ÌΪy?lnx2=1

(x?x2),¼´y=x+lnx2?1.

1

x2

x2

?2x+2=1 ¢Ù

xÁ½ÇÐÏßÖØºÏµÄ³äÒªÌõ¼þÊÇ?

??x+a =lnx?1 ¢Ú

1

2

21

2

ÓÉ¢Ù¼°x1<0

1

ÓÉ¢Ù¢ÚµÃa= x1+ln?1=x12?ln(2x1+2)?1.

2x1+2

2

Áîh(x1)=x12?ln(2x1+2)?1(?1

1

Ôòh?(x1)=2x1?<0, ËùÒÔ h(x1)ÔÚ(?1,0)ÉÏÊǼõº¯Êý.

x1+1Ôòh(x1)>h(0)=?ln2?1, ËùÒÔa>?ln2?1,

ÓÖµ±x1?(?1,0)ÇÒÇ÷½üÓÚ?1ʱ, h(x1)ÎÞÏÞÔö´ó, ËùÒÔaµÄȡֵ·¶Î§ÊÇ(?ln2?1,+?).

¹Êµ±º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏ,aµÄȡֵ·¶Î§ÊÇ(?ln

Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ

2?1,+?).

?x2?2x?a,x?037.£¨2013¡¤ËÄ´¨¸ß¿¼ÎĿơ¤£Ô21£© ÒÑÖªº¯Êýf(x)??£¬ÆäÖÐaÊÇ

lnx,x?0?ʵÊý¡£ÉèA(x1,f(x1))£¬B(x2,f(x2))Ϊ¸Ãº¯ÊýͼÏóÉϵÄÁ½µã£¬ÇÒx1?x2. £¨¢ñ£©Ö¸³öº¯Êýf(x)µÄµ¥µ÷Çø¼ä£»

£¨¢ò£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇÒx2?0£¬Ö¤Ã÷£º x2?x1?1£»£¨¢ó£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏ£¬ÇóaµÄȡֵ·¶Î§¡£ ¡¾½âÌâÖ¸ÄÏ¡¿ÔÚÇó½â¹ý³ÌÖУ¬Ê×ÏÈÐèÒª°ÑÎÕº¯ÊýµÄ½âÎöʽ¼°¶¨ÒåÓò£¬½áºÏ¸÷¶Îº¯ÊýµÄÌØÕ÷È·¶¨Æäµ¥µ÷Çø¼ä£¬ÔÚºóÐøµÄÇó½â¹ý³ÌÖУ¬ÐèÒªÊ×ÏÈÇó½âº¯Êý

f(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßµÄбÂÊ£¬½áºÏÒÑÖªÖ¤Ã÷£¬ÔÚµÚ£¨¢ó£©ÎÊÖУ¬Ó¦

×ÅÖØ·ÖÎöº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏµÃµ½µÄÐÅÏ¢.

¡¾½âÎö¡¿(¢ñ)º¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼äΪ(??,?1), µ¥µ÷µÝÔöÇø¼äΪ(?1,0),(0,+?).

(¢ò)Óɵ¼ÊýµÄ¼¸ºÎÒâÒå¿ÉÖª,µãA´¦µÄÇÐÏßбÂÊΪf ?(x1),µãB´¦µÄÇÐÏßбÂÊΪf ?(x2),

¹Êµ±µãA´¦µÄÇÐÏßÓëµãB´¦µÄÇÐÏß´¹Ö±Ê±,ÓÐf ?(x1)f ?(x2)=?1. µ±x<0ʱ,¶Ôº¯Êýf(x)Çóµ¼£¬µÃf ?(x)=2x+2 ÒòΪx10.

1

Òò´Ëx2?x1=[?(2x1+2)+ 2x2+2]?[?(2x1+2)](2x2+2)=1,

231

µ±ÇÒ½öµ±?(2x1+2)= 2x2+2=1£¬¼´x1=?ÇÒx2=?ʱµÈºÅ³ÉÁ¢.

22ËùÒÔ,º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïഹֱʱ, ÓÐx2?x1?1. (¢ó) µ±x1x1>0ʱ, f ?(x1)?f ?(x2), ¹Êx1<0

µ±x1<0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x1,f(x1))´¦µÄÇÐÏß·½³ÌΪ

Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ

y?(x12+2x1+a)=(2x1+2)(x?x1),

¼´y=(2x1+2)x?x12+a.

µ±x2>0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x2,f(x2))´¦µÄÇÐÏß·½³ÌΪy?lnx2=(x?x2),¼´y=x+lnx2?1.

1

1

x2

x2

?2x+2=1 ¢Ù

xÁ½ÇÐÏßÖØºÏµÄ³äÒªÌõ¼þÊÇ?

??x+a =lnx?1 ¢Ú

1

2

21

2

ÓÉ¢Ù¼°x1<0

x2

?1??1?-1 ÓÉ¢Ù¢ÚµÃ,a=lnx2+??2x2?211?1?2=-ln+??2?-1.

x24x?2?Áît=,Ôò0

1

x2

14Éèh(t)=t2-t-lnt(0

11(t?1)2?3Ôòh'(t)=t-1-=<0,

2t2t14ËùÒÔh(t)(0h(2)=-ln2-1, ËùÒÔa>-ln2-1.

¶øµ±t¡Ê(0,2)ÇÒtÇ÷½üÓÚ0ʱ,h(t)ÎÞÏÞÔö´ó. ËùÒÔaµÄȡֵ·¶Î§ÊÇ(-ln2-1,+¡Þ).

¹Êµ±º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏʱ,aµÄȡֵ·¶Î§ÊÇ(-ln2-1,+¡Þ).

  • ÊÕ²Ø
  • Î¥¹æ¾Ù±¨
  • °æÈ¨ÈÏÁì
ÏÂÔØÎĵµ10.00 Ôª ¼ÓÈëVIPÃâ·ÑÏÂÔØ
ÍÆ¼öÏÂÔØ
±¾ÎÄ×÷Õߣº...

¹²·ÖÏí92ƪÏà¹ØÎĵµ

Îĵµ¼ò½é£º

Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ 1f?(x)?4ex(x?2)?2x?4?4(x?2)(ex?). 2Áîf?(x)?0£¬µÃx??ln2»òx??2. ´Ó¶øµ±x?(??,?2)?(?ln2,??)ʱ£¬f?(x)?0£» µ±x?(?2,?ln2)ʱ£¬f?(x)?0£» ¹Êf(x)ÔÚ(??,?2)£¬(?ln2,??)µ¥µ÷µÝÔö£¬ÔÚx?(?2,?ln2)µ¥µ÷µÝ¼õ. µ±x??2ʱ£¬º¯Êýf(x)È¡µÃ¼«´óÖµ£¬¼«´óֵΪf(?2)?4(1?e?2) ?x2?2x?a,x?0,36.£¨2013¡¤ËÄ´¨¸ß¿¼Àí¿Æ¡¤£Ô21£©ÒÑÖªº¯Êýf(x)??ÆäÖÐaÊÇʵ?lnx,x?0,Êý£®ÉèA(x1,f(x1))£¬B(x2,f(x2))Ϊ¸Ãº¯ÊýͼÏóÉϵÄÁ½µã£¬ÇÒx1?x2£® £¨¢ñ£©Ö¸³öº¯Êýf(x)µÄµ¥µ÷Çø¼ä£» £¨¢ò£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇÒx2?0£¬Çóx2

¡Á ÓοͿì½ÝÏÂÔØÍ¨µÀ£¨ÏÂÔØºó¿ÉÒÔ×ÔÓɸ´ÖƺÍÅŰ棩
µ¥Æª¸¶·ÑÏÂÔØ
ÏÞÊ±ÌØ¼Û£º10 Ôª/·Ý Ô­¼Û:20Ôª
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
VIP°üÔÂÏÂÔØ
ÌØ¼Û£º29 Ôª/Ô ԭ¼Û:99Ôª
µÍÖÁ 0.3 Ôª/·Ý ÿÔÂÏÂÔØ150·Ý
ȫվÄÚÈÝÃâ·Ñ×ÔÓɸ´ÖÆ
×¢£ºÏÂÔØÎĵµÓпÉÄÜ¡°Ö»ÓÐĿ¼»òÕßÄÚÈݲ»È«¡±µÈÇé¿ö£¬ÇëÏÂÔØÖ®Ç°×¢Òâ±æ±ð£¬Èç¹ûÄúÒѸ¶·ÑÇÒÎÞ·¨ÏÂÔØ»òÄÚÈÝÓÐÎÊÌ⣬ÇëÁªÏµÎÒÃÇЭÖúÄã´¦Àí¡£
΢ÐÅ£ºfanwen365 QQ£º370150219
Copyright © ÔÆÌ⺣ All Rights Reserved. ËÕICP±¸16052595ºÅ-3 ÍøÕ¾µØÍ¼ ¿Í·þQQ£º370150219 ÓÊÏ䣺370150219@qq.com