µ±Ç°Î»ÖãºÊ×Ò³ > ¿¼µã11 µ¼ÊýÔÚÑо¿º¯ÊýÖеÄÓ¦ÓÃÓëÉú»îÖеÄÓÅ»¯ÎÊÌâ¾ÙÀý
Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ
1f?(x)?4ex(x?2)?2x?4?4(x?2)(ex?). 2Áîf?(x)?0£¬µÃx??ln2»òx??2. ´Ó¶øµ±x?(??,?2)?(?ln2,??)ʱ£¬f?(x)?0£» µ±x?(?2,?ln2)ʱ£¬f?(x)?0£» ¹Êf(x)ÔÚ(??,?2)£¬(?ln2,??)µ¥µ÷µÝÔö£¬ÔÚx?(?2,?ln2)µ¥µ÷µÝ¼õ. µ±x??2ʱ£¬º¯Êýf(x)È¡µÃ¼«´óÖµ£¬¼«´óֵΪf(?2)?4(1?e?2)
?x2?2x?a,x?0,36.£¨2013¡¤ËÄ´¨¸ß¿¼Àí¿Æ¡¤£Ô21£©ÒÑÖªº¯Êýf(x)??ÆäÖÐaÊÇʵ
?lnx,x?0,Êý£®ÉèA(x1,f(x1))£¬B(x2,f(x2))Ϊ¸Ãº¯ÊýͼÏóÉϵÄÁ½µã£¬ÇÒx1?x2£® £¨¢ñ£©Ö¸³öº¯Êýf(x)µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇÒx2?0£¬Çóx2?x1µÄ×îСֵ£»
£¨¢ó£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏ£¬ÇóaµÄȡֵ·¶Î§£® ¡¾½âÌâÖ¸ÄÏ¡¿ÔÚÇó½â¹ý³ÌÖУ¬Ê×ÏÈÐèÒª°ÑÎÕº¯ÊýµÄ½âÎöʽ¼°¶¨ÒåÓò£¬½áºÏ¸÷¶Îº¯ÊýµÄÌØÕ÷È·¶¨Æäµ¥µ÷Çø¼ä£¬ÔÚºóÐøµÄÇó½â¹ý³ÌÖУ¬ÐèÒªÊ×ÏÈÇó½âº¯Êý
f(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßµÄбÂÊ£¬½áºÏÒÑÖªÇó½âx2?x1µÄ×îСֵ£¬ÔÚµÚ
£¨¢ó£©ÎÊÖУ¬Ó¦×ÅÖØ·ÖÎöº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏµÃµ½µÄÐÅÏ¢. ¡¾½âÎö¡¿(¢ñ)º¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼äΪ(??,?1), µ¥µ÷µÝÔöÇø¼äΪ(?1,0),(0,+?).
(¢ò)Óɵ¼ÊýµÄ¼¸ºÎÒâÒå¿ÉÖª,µãA´¦µÄÇÐÏßбÂÊΪf ?(x1),µãB´¦µÄÇÐÏßбÂÊΪf ?(x2),
ËùÒÔµ±µãA´¦µÄÇÐÏßÓëµãB´¦µÄÇÐÏß´¹Ö±Ê±,ÓÐf ?(x1)f ?(x2)=?1. µ±x<0ʱ,f ?(x)=2x+2
ÒòΪx1
Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ
1
Òò´Ëx2?x1=[?(2x1+2)+ 2x2+2]?[?(2x1+2)](2x2+2)=1,
231
µ±ÇÒ½öµ±?(2x1+2)= 2x2+2=1¼´x1=?,x2=?ʱµÈºÅ³ÉÁ¢.
22
ËùÒÔ,º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïഹֱʱ,Çóx2?x1µÄ×îСֵΪ1.
(¢ó)µ±x1 µ±x1<0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x1,f(x1))´¦µÄÇÐÏß·½³ÌΪ y?(x12+2x1+a)=(2x1+2)(x?x1), ¼´y=(2x1+2)x?x12+a. µ±x2>0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x2,f(x2))´¦µÄÇÐÏß·½³ÌΪy?lnx2=1 (x?x2),¼´y=x+lnx2?1. 1 x2 x2 ?2x+2=1 ¢Ù xÁ½ÇÐÏßÖØºÏµÄ³äÒªÌõ¼þÊÇ? ??x+a =lnx?1 ¢Ú 1 2 21 2 ÓÉ¢Ù¼°x1<0 1 ÓÉ¢Ù¢ÚµÃa= x1+ln?1=x12?ln(2x1+2)?1. 2x1+2 2 Áîh(x1)=x12?ln(2x1+2)?1(?1 1 Ôòh?(x1)=2x1?<0, ËùÒÔ h(x1)ÔÚ(?1,0)ÉÏÊǼõº¯Êý. x1+1Ôòh(x1)>h(0)=?ln2?1, ËùÒÔa>?ln2?1, ÓÖµ±x1?(?1,0)ÇÒÇ÷½üÓÚ?1ʱ, h(x1)ÎÞÏÞÔö´ó, ËùÒÔaµÄȡֵ·¶Î§ÊÇ(?ln2?1,+?). ¹Êµ±º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏ,aµÄȡֵ·¶Î§ÊÇ(?ln Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ 2?1,+?). ?x2?2x?a,x?037.£¨2013¡¤ËÄ´¨¸ß¿¼ÎĿơ¤£Ô21£© ÒÑÖªº¯Êýf(x)??£¬ÆäÖÐaÊÇ lnx,x?0?ʵÊý¡£ÉèA(x1,f(x1))£¬B(x2,f(x2))Ϊ¸Ãº¯ÊýͼÏóÉϵÄÁ½µã£¬ÇÒx1?x2. £¨¢ñ£©Ö¸³öº¯Êýf(x)µÄµ¥µ÷Çø¼ä£» £¨¢ò£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇÒx2?0£¬Ö¤Ã÷£º x2?x1?1£»£¨¢ó£©Èôº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏ£¬ÇóaµÄȡֵ·¶Î§¡£ ¡¾½âÌâÖ¸ÄÏ¡¿ÔÚÇó½â¹ý³ÌÖУ¬Ê×ÏÈÐèÒª°ÑÎÕº¯ÊýµÄ½âÎöʽ¼°¶¨ÒåÓò£¬½áºÏ¸÷¶Îº¯ÊýµÄÌØÕ÷È·¶¨Æäµ¥µ÷Çø¼ä£¬ÔÚºóÐøµÄÇó½â¹ý³ÌÖУ¬ÐèÒªÊ×ÏÈÇó½âº¯Êý f(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßµÄбÂÊ£¬½áºÏÒÑÖªÖ¤Ã÷£¬ÔÚµÚ£¨¢ó£©ÎÊÖУ¬Ó¦ ×ÅÖØ·ÖÎöº¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏµÃµ½µÄÐÅÏ¢. ¡¾½âÎö¡¿(¢ñ)º¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼äΪ(??,?1), µ¥µ÷µÝÔöÇø¼äΪ(?1,0),(0,+?). (¢ò)Óɵ¼ÊýµÄ¼¸ºÎÒâÒå¿ÉÖª,µãA´¦µÄÇÐÏßбÂÊΪf ?(x1),µãB´¦µÄÇÐÏßбÂÊΪf ?(x2), ¹Êµ±µãA´¦µÄÇÐÏßÓëµãB´¦µÄÇÐÏß´¹Ö±Ê±,ÓÐf ?(x1)f ?(x2)=?1. µ±x<0ʱ,¶Ôº¯Êýf(x)Çóµ¼£¬µÃf ?(x)=2x+2 ÒòΪx1 1 Òò´Ëx2?x1=[?(2x1+2)+ 2x2+2]?[?(2x1+2)](2x2+2)=1, 231 µ±ÇÒ½öµ±?(2x1+2)= 2x2+2=1£¬¼´x1=?ÇÒx2=?ʱµÈºÅ³ÉÁ¢. 22ËùÒÔ,º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏß»¥Ïഹֱʱ, ÓÐx2?x1?1. (¢ó) µ±x1 µ±x1<0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x1,f(x1))´¦µÄÇÐÏß·½³ÌΪ Բѧ×ÓÃÎÏë Öý½ð×ÖÆ·ÅÆ y?(x12+2x1+a)=(2x1+2)(x?x1), ¼´y=(2x1+2)x?x12+a. µ±x2>0ʱ,º¯Êýf(x)µÄͼÏóÔÚµã(x2,f(x2))´¦µÄÇÐÏß·½³ÌΪy?lnx2=(x?x2),¼´y=x+lnx2?1. 1 1 x2 x2 ?2x+2=1 ¢Ù xÁ½ÇÐÏßÖØºÏµÄ³äÒªÌõ¼þÊÇ? ??x+a =lnx?1 ¢Ú 1 2 21 2 ÓÉ¢Ù¼°x1<0 x2 ?1??1?-1 ÓÉ¢Ù¢ÚµÃ,a=lnx2+??2x2?211?1?2=-ln+??2?-1. x24x?2?Áît=,Ôò0 1 x2 14Éèh(t)=t2-t-lnt(0 11(t?1)2?3Ôòh'(t)=t-1-=<0, 2t2t14ËùÒÔh(t)(0 ¶øµ±t¡Ê(0,2)ÇÒtÇ÷½üÓÚ0ʱ,h(t)ÎÞÏÞÔö´ó. ËùÒÔaµÄȡֵ·¶Î§ÊÇ(-ln2-1,+¡Þ). ¹Êµ±º¯Êýf(x)µÄͼÏóÔÚµãA,B´¦µÄÇÐÏßÖØºÏʱ,aµÄȡֵ·¶Î§ÊÇ(-ln2-1,+¡Þ).
¹²·ÖÏí92ƪÏà¹ØÎĵµ