云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 环形缓冲区的实现原理

环形缓冲区的实现原理

  • 62 次阅读
  • 3 次下载
  • 2025/6/18 8:09:41

在CAN通信卡设备驱动程序中,为了增强CAN通信卡的通信能力、提高通信效率,根据CAN的特点,使用两级缓冲区结构,即直接面向CAN通信卡的收发缓 冲区和直接面向系统调用的接收帧缓冲区。 通讯中的收发缓冲区一般采用环形队列(或称为FIFO队列),使用环形的缓冲区可以使得读写并发执行,读进程和写进程可以采用“生产者和消费者”的模型来 访问缓冲区,从而方便了缓存的使用和管理。然而,环形缓冲区的执行效率并不高,每读一个字节之前,需要判断缓冲区是否为空,并且移动尾指针时需要进行“折行处理”(即当指针指到缓冲区内存的末尾时,需要新将其定向到缓冲区的首地址);每写一个字节之前,需要判断缓区是否为,并且移动尾指针时同样需要进行“ 折行处理”。程序大部分的执行过程都是在处理个别极端的情况。只有小部分在进行实际有效的操作。这就是软件工程中所谓的“8比2”关系。结合CAN通讯实际情况,在本设计中对环形队列进行了改进,可以较大地提高数据的收发效率。 由于CAN通信卡上接收和发送缓冲器每次只接收一帧CAN数据,而且根据CAN的通讯协议,CAN控制器的发送数据由1个字节的标识符、一个字节的RTR 和DLC位及8个字节的数据区组成,共10个字节;接收缓冲器与之类似,也有10个字节的寄存器。所以CAN控制器收的数据是短小的定长帧(数据可以不满 8字节)。 于是,采用度为10字节的数据块业分配内存比较方便,即每次需要内存缓冲区时,直接分配10个字节,由于这10个字节的地址是线性的,故不需要进行“折行”处理。更重要的是,在向缓冲区中写数据时,只需要判断一次是否有空闲块并获取其块首指针就可以了,从而减少了重复性的条件判断,大大提高了程序的执行效率;同样在从缓冲队列中读取数据时,也是一次读取10字节的数据块,同样减少了重复性的条件判断。 在CAN卡驱动程序中采用如下所示的称为“Block_Ring_t”的数据结构作为收发数据的缓冲区: typedef struct { long signature; unsigned char *head_p; unsigned char *tail_p; unsigned char *begin_p; unsigned char *end_p; unsigned char buffer [BLOCK_RING_BUFFER_SIZE]; int usedbytes; }Block_Ring_t;

该数据结构在通用的环形队列上增加了一个数据成员usedbytes,它表示当前缓冲区中有多少字节的空间被占用了。使用usedbytes,可以比较方 便地进行缓冲区满或空的判断。当usedbytes=0时,缓冲区空;当

usedbytes=BLOCK_RING_BUFFER_SIZE时,缓冲区 满。 本驱动程序除了收发缓冲区外,还有一个接收帧缓冲区,接收帧队列负责管理经Hilon A协议解包后得到的数据帧。由于有可能要同接收多个数据帧,而根据CAN总线遥通信协议,高优先级的报文将抢占总线,则有可能在接收一个低优先级且被分为 好几段发送的数据帧时,被一个优先级高的数据帧打断。这样会出现同时接收到多个数据帧中的数据包,因而需要有个接收队列对同时接收的数据帧进行管理。 当有新的数据包到来时,应根据addr(通讯地址),mode(通讯方式),index(数据包的序号)来判断是否是新的数据帧。如果是,则开辟新的 frame_node;否则如果已有相应的帧节点存地,则将数据附加到该帧的末尾;在插入数据的同时,应该检查接收包的序号是否正确,如不正确将丢弃这包 数据。 每次建立新的frame_node时,需要向frame_queue申请内存空间;当frame_queue已满时,释放掉队首的节点(最早接收的但未完 成的帧)并返回该节点的指针。 当系统调用读取了接收帧后,释放该节点空间,使设备驱动程序可以重新使用该节点。

形缓冲区:环形缓冲队列学习

来源: 发布时间:星期四, 2008年9月25日 浏览:117次 评论:0

项目中需要线程之间共享一个缓冲FIFO队列,一个线程往队列中添数据,另一个线程取数据(经典的生产者-消费者问题)。开始考虑用STL的vector 容器, 但不需要随机访问,频繁的删除最前的元素引起内存移动,降低了效率。使用LinkList做队列的话,也需要频繁分配和释放结点内存。于是自己实现一个有 限大小的FIFO队列,直接采用数组进行环形读取。

队列的读写需要在外部进程线程同步(另外写了一个RWGuard类, 见另一文) 到项目的针对性简单性,实现了一个简单的环形缓冲队列,比STL的vector简单

PS: 第一次使用模板,原来类模板的定义要放在.h 文件中, 不然会出现连接错误。

template class CShareQueue { public: CShareQueue();

CShareQueue(unsigned int bufsize); virtual ~CShareQueue(); _Type pop_front(); bool push_back( _Type item); //返回容量

unsigned int capacity() { //warning:需要外部数据一致性 return m_capacity; }

//返回当前个数

unsigned int size() { //warning:需要外部数据一致性 return m_size; }

//是否满//warning: 需要外部控制数据一致性 bool IsFull() {

return (m_size >= m_capacity); }

bool IsEmpty() { return (m_size == 0); } protected: UINT m_head; UINT m_tail; UINT m_size; UINT m_capacity; _Type *pBuf; };

template

CShareQueue<_Type>::CShareQueue() : m_head(0), m_tail(0), m_size(0) {

pBuf = new _Type[512];//默认512 m_capacity = 512; }

template

CShareQueue<_Type>::CShareQueue(unsigned int bufsize) : m_head(0), m_tail(0) {

if( bufsize > 512 || bufsize < 1) {

pBuf = new _Type[512]; m_capacity = 512; } else {

pBuf = new _Type[bufsize];

搜索更多关于: 环形缓冲区的实现原理 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

在CAN通信卡设备驱动程序中,为了增强CAN通信卡的通信能力、提高通信效率,根据CAN的特点,使用两级缓冲区结构,即直接面向CAN通信卡的收发缓 冲区和直接面向系统调用的接收帧缓冲区。 通讯中的收发缓冲区一般采用环形队列(或称为FIFO队列),使用环形的缓冲区可以使得读写并发执行,读进程和写进程可以采用“生产者和消费者”的模型来 访问缓冲区,从而方便了缓存的使用和管理。然而,环形缓冲区的执行效率并不高,每读一个字节之前,需要判断缓冲区是否为空,并且移动尾指针时需要进行“折行处理”(即当指针指到缓冲区内存的末尾时,需要新将其定向到缓冲区的首地址);每写一个字节之前,需要判断缓区是否为,并且移动尾指针时同样需要进行“ 折行处理”。程序大部分的执行过程都是在处理个别极端的情况。只有小部分在进行实际有效的操作。这就是软件工程中所谓的“8比2”关系。结合CAN通讯实际情况,在本设计中对环形队列

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com