当前位置:首页 > 第1讲.集合、简易逻辑含答案
3. 【解析】
AB??4,7,9?,AB??3,4,5,7,8,9?,eU?AB???3,5,8?.
10、
已知集合M?x|x2?1,集合N??x|ax?1?,若N?M,那么a的值是________.
??0,?1. 【解析】
11、 (2009年湖南)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 . 【解析】 12. 12、
(2009年北京)设A是整数集的一个非空子集,对于k?A,如果k?1?A,且k?1?A,
那么称k是A的一个“孤立元”.给定S??1,2,3,4,5,6,7,8?,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.
6. 【解析】
13、 已知函数y?ln?4?x?的定义域为A,集合B??x|x?a?,若“x?A”是“x?B”的充分不
必要条件,则实数a的取值范围是 .
【解析】 ?4,???
14、 下列命题中,真命题是 .
①?n?R,n2≥n; ②?n?R,n2?n;
③?n?R,?m?R,m2?n; ④?n?R,?m?R,mn?m.
【解析】 ④
三、解答题 15、
X已知X是方程x2?px?q?0的实数解集,A??1,3,5,7,9?,B??1,4,7?,且A??,XB?X,求p,q的值.
【解析】 p??8,q?16.
16、
已知集合A?x|ax2?3x?2?0,x?R.
??⑴若A??,求实数a的取值范围;
⑵若A是单元素集,求a的值及集合A; ⑶求集合M??a|a?R,A???.
【解析】 ⑴a?9. 89??⑵M??a|a≤?.
8??
17、 判断下列命题是全称命题还是特称命题,并判断真假:
⑴对数函数都是单调函数;
⑵至少有一个整数,它既能被2整除,又能被5整除. 【解析】 ⑴全称命题,真命题;⑵ 特称命题,真命题.
18、
已知a?0,设命题p:函数y?ax在R上单调递增;命题q:不等式ax2?ax?1?0对任
第1讲·教师版
13
意实数x恒成立.若“p且q”为假,“p或q”为真,求a的取值范围.
【解析】 ?0,1?
?4,???
14
第1讲·教师版
共分享92篇相关文档