云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2017年浙江中考数学真题分类汇编 二次函数(解析版) - 图文

2017年浙江中考数学真题分类汇编 二次函数(解析版) - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 15:13:37

2017年浙江中考真题分类汇编:专题06 二次函数

一、单选题(共6题;共12分)

1、抛物线 (m是常数)的顶点在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限

2、对于二次函数y=?(x?1)2+2的图象与性质,下列说法正确的是( )

的速度沿折线A—C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,

P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1 , C2两段组成,如图2所示.

A、对称轴是直线x=1,最小值是2 B、对称轴是直线x=1,最大值是2 C、对称轴是直线x=?1,最小值是2 D、对称轴是直线x=?1,最大值是22 3、设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴( ) A、若m>1,则(m﹣1)a+b>0 B、若m>1,则(m﹣1)a+b<0 C、若m<1,则(m﹣1)a+b>0 D、若m<1,则(m﹣1)a+b<0【来源: 4、矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2 , 再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )

A、y=x2+8x+14 B、y=x2-8x+14 C、y=x2+4x+3 D、y=x2-4x+3 5、下列关于函数 的四个命题:①当 时, 有最小值10;② 为任意实数, 时的函数值大于 时的函数值;③若 ,且 是整数,当 时, 的整数值有 个;④若函数图象过点

,其中

,则

.其中真命题

的序号是( ) www.21-cn-jy.com

A、① B、② C、③ D、④

6、将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )

A、向左平移1个单位 B、向右平移3个单位 C、向上平移3个单位 D、向下平移1个单位 二、填空题(共1题;共2分)

7、在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).

①如图1,若BC=4m,则S=________m. ②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.

三、解答题(共12题;共156分)

8、(2017?绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙

足够长),已知计划中的建筑材料可建围墙的总长为为50m.设饲养室长为x(m),占地面积为y(m2).

(1)如图1,问饲养室长x为多少时,占地面积y最大? (2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大。小敏说:“只要饲养室长比(1)中的长多2m就行了.” www-2-1-cnjy-com 9、(2017·嘉兴)如图,某日的钱塘江观潮信息如表:

按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离 (千米)与时间 (分钟)的函数关系用图3表示,其中:“11:40时甲地?交叉潮?的潮头离乙地 12千米”记为点 ,点 坐标为 ,曲线 可用二次函数

( , 是常数)刻画.

(1)求 的值,并求出潮头从甲地到乙地的速度; (2)11:59时,小红骑单车从乙地出发,沿江边公路以 千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?

(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为 千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度

是加速前的速度).

10、(2017·丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s

(1)求a的值;

(2)求图2中图象C2段的函数表达式;

(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围. 21·cn·jy·com

11、(2017?温州)如图,过抛物线y=

x2﹣2x上一点A作x轴的平行线,

交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.

(1)求抛物线的对称轴和点B的坐标; (2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;

①连结BD,求BD的最小值;

②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.

12、(2017?杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.

(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;

(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;

(3)已知点P(x0 , m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.

13、(2017?湖州)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为 万元;放养 天的总成本为 万元(总成本=放养总费用+收购成本). 21世纪教育网版权所有

(1)设每天的放养费用是 万元,收购成本为 万元,求 和 的值;

角板两条直角边的痕迹)

(2)设这批淡水鱼放养 天后的质量为 ( ),销售单价为 元/ .根据

以往经验可知: 与 的函数关系为 ;

与 的函数关系如图所示.

①分别求出当 和 时, 与 的函数关系式;

②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润=销售总额-总成本)

14、如图,抛物线

与x轴

的负半轴交于点A,与y轴交于点B,连结AB.点C

在抛物线上,直线AC与y

轴交于点D.

(1)求c的值及直线AC的函数表达式; (2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点. ①求证:△APM∽△AON;

②设点M的横坐标为m , 求AN的长(用含m的代数式表示).

15、(2017·台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:

第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;

第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1) 第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三

(2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根;

(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程

的实数根,请你直接写出一对固定点的

坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当 , , , 与a,b,c之间满足怎样的关系时,点P( , ),Q( , )就是符合要求的一对固定点? 【版权所有:21教育】

16、(2017·台州)交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表: 速度v(千米/小时) … 5 10 20 32 40 48 … 流量q(辆/小时) … 550 1000 1600 1792 1600 1152 … (1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是________(只需填上正确答案的序号)①

② ③

21cnjy.com

(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少? (3)已知q,v,k满足 ,请结合(1)中选取的函数关系式继续解决下列问题:

①市交通运行监控平台显示,当 时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;

②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值

17、(2017·衢州)定义:如图1,抛物线 与 轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足 ,则称点P为抛物线 的勾股点。

2·1·c·n·j·y

(1)直接写出抛物线

的勾股点的坐标;

(2)如图2,已知抛物线C: 与 轴交于A,B两点,点P

(1,

)是抛物线C的勾股点,求抛物线C的函数表达式; 21·世纪*教育网

(3)在(2)的条件下,点Q在抛物线C上,求满足条件 的点Q

(异于点P)的坐标

18、(2017·金华)(本题12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,

),B(9,5

),C(14,0).动点P与Q同时从O

点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA?AB?BC运动,在OA,AB,BC上运动的速度分别为3, ,

(单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.

【来

(1)求AB所在直线的函数表达式.

(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.

(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值. 19、(2017·金华)(本题8分) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲 在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式 ,已知

点O与球网的水平距离为5m,球网的高度1.55m. (1)当a=?

时,①求h的值.②通过计算判断此球能否过网.

(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为

m的Q处时,乙扣球成功,求a的值.

答案解析部分

一、单选题

1、【答案】A

【考点】坐标确定位置,二次函数的性质 【解析】【解答】解: ∵y=x2-2x+m2+2. ∴y=(x-1)2+m2+1.

∴顶点坐标(1,m2+1). ∴顶点坐标在第一象限. 故答案为A.

【分析】根据配方法得出顶点坐标,从而判断出象限. 21教育名师原创作品 2、【答案】B

【考点】二次函数的性质 【解析】【解答】解:∵y=-+2,

∴抛物线开口向下,顶点坐标为(1,2),对称轴为x=1, ∴当x=1时,y有最大值2, 故选B。

【分析】由抛物线的解析式可确定其开口方向、对称轴、顶点坐标及最值,则可求得答案。

3、【答案】C

【考点】二次函数图象与系数的关系 【解析】【解答】解:由对称轴,得 b=﹣2a.

(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a ∵a<0

当m<1时,(m﹣3)a>0, 故选:C. 【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案. 2-1-c-n-j-y4、【答案】A

【考点】二次函数的图象

【解析】【解答】解:如图,A(2,1),则可得C(-2,-1).

由A(2,1)到C(-2,-1),需要向左平移4个单位,向下平移2个单位, 则抛物线的函数表达式为y=x2 , 经过平移变为y=(x+4)2-2= x2+8x+14, 故选A.

【分析】题中的意思就是将抛物线y=x2平移后,点A平移到了点C,由A的坐标不难得出C的坐标,由平移的性质可得点A怎样平移到点C,那么抛物线y=x2 , 就怎样平移到新的抛物线. 5、【答案】C

【考点】二次函数图象上点的坐标特征

【解析】【解答】解:①错,理由:当x=时,y取得最小值; ②错,理由:因为

, 即横坐标分别为x=3+n , x=3?n的两点的纵

坐标相等,即它们的函数值相等;

③对,理由:若n>3,则当x=n时,y=n2? 6n+10>1, 当x=n+1时,y=(n+1)2? 6(n+1)+10=n2?4n+5, 则n2?4n+5-(n2? 6n+10)=2n-5,

因为当n为整数时,n2? 6n+10也是整数,2n-5也是整数,n2?4n+5也是整数, 故y有2n-5+1=2n-4个整数值; ④错,理由:当x<3时,y随x的增大而减小,所以当a<3,b<3时,因为y0b,故错误; 故答案选C.

【分析】①二次项系数为正数,故y有最小值,运用公式x=

解出x的值,

即可解答;

②横坐标分别为x=3+n , x=3?n的两点是关于对称轴对称的;

③分别求出x=n,x=n+1的y值,这两个y值是整数,用后者与前都作差,可得它们的差,差加1即为整数值个数;

④当这两点在对称轴的左侧时,明示有a

【考点】二次函数的图象,二次函数的性质,二次函数的应用 【解析】【解答】解:A. 向左平移1个单位后,得到y=(x+1)2 , 当x=1时,y=4,则平移后的图象经过A(1,4);

B. 向右平移3个单位,得到y=(x-3)2 , 当x=1时,y=4,则平移后的图象经过A(1,4);

C. 向上平移3个单位,得到y=x2+3,当x=1时,y=4,则平移后的图象经过A(1,4);

D. 向下平移1个单位,得到y=x2-1,当x=1时,y=0,则平移后的图象不经过A(1,4); 故选.

【分析】遵循“对于水平平移时,x要左加右减”“对于上下平移时,y要上加下减”的原则分别写出平移后的函数解析式,将x=1代入解析式,检验y是否等于4. 二、填空题 7、【答案】88;

【考点】二次函数的最值,扇形面积的计算,圆的综合题

【解析】【解答】解:(1)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,4为半径的个圆;在C处是以C为圆心,6为半径的个圆;

∴S=..+..+..

=88;

(2)设BC=x,则AB=10-x;

∴S=..+..+..;

=(-10x+250) 当x=时,S最小, ∴BC=

【分析】(1)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,4为半径的个圆;在C处是以C为圆心,6为半径的个圆;这样就可以求出S的值;

(2)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,x为半径的个圆;在C处是以C为圆心,10-x为半径的

个圆;这样就可

以得出一个S关于x的二次函数,根据二次函数的性质在顶点处取得最小值,求出BC值。 三、解答题

8、【答案】(1)解:因为

所以当x=25时,占地面积y最大,

即当饲养室长为25m时,占地面积最大. (2)解:因为

所以当x=26时,占地面积y最大, 即饲养室长为26m时,占地面积最大. 因为26-25=1≠2,

所以小敏的说法不正确. 【考点】一元二次方程的应用

【解析】【分析】(1)根据矩形的面积=长×高,已知长为x,则宽为

代入求出y关于x的函数解析式,配成二次函数的顶点式,即可求出x的值时,y有最大值;(2)长虽然不变,但长用料用了(x-2)m,所以宽变成了

由(1)同理,代入求出y关于x的函数解析式,配成二次函数的顶点式,即可求出x的值时,y有最大值.

9、【答案】(1)解:11:40到12:10的时间是30分钟,则B(30,0), 潮头从甲地到乙地的速度=

=0.4(千米/分钟).

(2)解:∵潮头的速度为0.4千米/分钟, ∴到11:59时,潮头已前进19×0.4=7.6(千米), ∴此时潮头离乙地=12-7.6=4.4(千米), 设小红出发x分钟与潮头相遇, ∴0.4x+0.48x=4.4, ∴x=5,

∴小红5分钟后与潮头相遇.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2017年浙江中考真题分类汇编:专题06 二次函数 一、单选题(共6题;共12分) 1、抛物线 (m是常数)的顶点在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 2、对于二次函数y=?(x?1)2+2的图象与性质,下列说法正确的是( ) 的速度沿折线A—C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1 , C2两段组成,如图2所示. A、对称轴是直线x=1,最小值是2 B、对称轴是直线x=1,最大值是2 C、对称轴是直线x=?1,最小值是2 D、对称轴是直线

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com