当前位置:首页 > (优辅资源)山东省菏泽市高三上学期期末考试数学(理)试题Word版含答案
优质文档
2t2?4?4kt设M?x1,y1?,N?x2,y2?,则x1?x2?,x1x2?, 222k+12k?1y1y2kx1?tkx2?tt(x?x)?4k????2k?12?2,由k1?k2??k,得x1x2x1x2x1x2t?2而k1?k2??4k??k, 2t?2?442??t?2?,即. t2?2?因为此等式对任意的k都成立,所以2由题意得点P?0,t?在椭圆内,故0?t?2,即0?2?4??2,解得??2. 21.解:(1)m?1时,f?x??ex?1?xlnx,f'?x??ex?1?lnx?1,
+??上单调递增,只要证:f'?x??0对x?0恒成立, 要证f?x?在?0,令i?x??ex?1?x,则i'?x??ex?1?1,当x?1时,i'?x??0,
1?上单调递减,在?1,+??上单调递增, 当x?1时,i'?x??0,故i?x?在???,所以i?x??i?1??0,即ex?1?x(当且仅当x?1时等号成立),
令j?x??x?1?lnx?x?0?,则j'?x??x?1, x,+??当0?x?1时,j'?x??0,当x?1时,j'?x??0,故j?x?在(0,1)上单调递减,在?1上单调递增,所以j?x??j?1??0,即x?lnx?1(当且仅当x?1时取等号),
f??x??ex?1?lnx?1?x??lnx?1??0(当且仅当x?1时等号成立)
f?x?在?0,+??上单调递增.
优质文档
优质文档
(2)由g?x??ex?m?lnx?m有g'?x??ex?m?1?x?0?,显然g'?x?是增函数, xx?m?令g'?x0??0,得e01xm,e?x0e0,m?x0?lnx0, x0则x??0,x0?时,g'?x??0,x??x0,???时,g'?x??0, ∴g?x?在?0,x0?上是减函数,在?x0,???上是增函数,
∴g?x?有极小值,g?x0??ex0?m?lnx0?m?1?2lnx0?x0, x0①当m?1时,x0?1,g?x?极小值=g?1??0,g?x?有一个零点1; ②m?1时,0?x0?1,g?x0??g?1??1?0?1?0,g?x?没有零点;
?me③当m?1时,x0?1,g?x0??1?0?1?0,又g?e??e?m?m?m?m?ee?m?m?0,
x又对于函数y?e?x?1,y'?e?1?0时x?0,
xx∴当x?0时,y?1?0?1?0,即e?x?1,
∴g?3m??e2m?ln3m?m?2m?1?ln3m?m?m?1?lnm?ln3,
1m?1?, mm令t?m??m?1?lnm?ln3,则t'?m??1?∵m?1,∴t'?m??0,∴t?m??t?1??2?ln3?0,∴g?3m??0,
又e?m?1?x0,3m?3x0?3lnx0?x0,∴g?x?有两个零点,
综上,当m?1时,g?x?没有零点;m?1时,g?x?有一个零点;m?1时,g?x?有两个零点.
优质文档
优质文档
??x??22.解:(1)由??y???5t5消去参数t,得y?2x, 25t5由?=22?sin(??2?4)?1,得?2?2?cos??2?sin??1?0,
所以曲线C的直角坐标方程为x?y?2x?2y?1?0, 即?x?1???y?1??1. 即曲线C是圆心为?1,1?,半径r?1的圆.
2222??2?2?sin??2?cos??1?0(2)联立直线l与曲线C的方程,得?,消去?,得
?tan??2?2?65?+1=0, 565,?1??2=1, 5设A、B对应的极径分别为?1,?2,则?1+?2????211?=1=所以OAOB?1?2??1+?2?2?4?1?2?1?2=45. 523.解:(1)因为f?x??x?1?x?2??x?1???x?2??3, 所以由f?x??a?1恒成立得a?1?3,
即a?1?3或a+1??3 所以a?2或a??4. (2)不等式x?1?2x?2?3等价于
优质文档
优质文档
x?1?2x?2?3或x?1?2x?2??3, ??x?5,x?1?x?1?2x?2???3x?3,?2?x?1. ?x?5,x??2?图像如下:
由图知解集为xx??8或x?0?.
?优质文档
共分享92篇相关文档