当前位置:首页 > 2017年新课标全国卷1卷2卷3高考理科数学试题及答案
以f?x?在?0,a?单调递减,在?a,+??单调递增,故x=a是f?x?在x??0,+??的唯一最小值点. 由于f?1??0,所以当且仅当a=1时,f?x??0. 故a=1
(2)由(1)知当x??1,+??时,x?1?lnx>0 令x=1+1?1?1得ln?1+n?<n,从而 2n?2?211?1??1??1?11ln?1+?+ln?1+2?+???+ln?1+n?<+2+???+n=1-n<1
22?2??2??2?22故?1+??1+??1??2??1??1?????1+22??2n??<e ?而?1+??1+22.解:
??1??2??1??1?1+3?>2,所以m的最小值为3. 2??2??2?(1)消去参数t得l1的普通方程l1:y?k?x?2?;消去参数m得l2的普通方程l2:y?1?x?2? k?y?k?x?2??设P(x,y),由题设得?,消去k得x2?y2?4?y?0?. 1?y??x?2?k?所以C的普通方程为x2?y2?4?y?0? (2)C的极坐标方程为r2?cosq2?sin2q??4?0<q<2pq,?p?
222?rcosq?sinq??4??联立?得cosq?sinq=2?cosq+sinq?.
q?-2=0??r?cosq+sinq??故tan代入r21912sin2q= ,从而cosq=,31010222?cosq-sinq?=4得r=5,所以交点M的极径为5. 23.解:
??3,?(1)f?x???2x?1,?3,?x<?1?1?x?2 x>2当x<?1时,f?x??1无解;
当?1?x?2时,由f?x??1得,2x?1?1,解得1?x?2 当x>2时,由f?x??1解得x>2. 所以f?x??1的解集为xx?1.
(2)由f?x??x2?x?m得m?x?1?x?2?x2?x,而
??x?1?x?2?x2?x?x+1+x?2?x2?x3?5?=-?x-?+2?4?5?4且当x?2
352时,x?1?x?2?x?x=. 24??5?4?故m的取值范围为?-?,?
共分享92篇相关文档