当前位置:首页 > 广东省佛山市2015年中考数学试题(word版,含解析)
10)×53=106元. 点评: 本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.
23.(8分)(2018?佛山)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F. (1)若∠E=∠F时,求证:∠ADC=∠ABC; (2)若∠E=∠F=42°时,求∠A的度数;
(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.
考点: 圆内接四边形的性质;圆周角定理. 分析: (1)根据外角的性质即可得到结论; (2)根据圆 内接四边形的性质和等量代换即可求得结果; (3)连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,即2∠A+α+β=180°,再解方程即可. 解答: 解:(1)∠E=∠F, ∵∠DCE=∠BCF, ∴∠ADC=∠E+∠DCE,∠ABC=∠F+ ∠BCF, ∴∠ADC=∠ABC; (2)由(1)知∠ADC=∠ABC, ∵∠EDC=∠ABC, ∴∠EDC=∠ADC, ∴∠ADC=90°, ∴∠A=90°﹣42°=48°; (3)连结EF,如图, ∵四边形ABCD为圆的内接四边形, ∴∠ECD=∠A, ∵∠ECD=∠1+∠2, ∴∠A=∠1+∠2, ∵∠A+∠1+∠2+∠E+∠F =180°, ∴2∠A+α+β=180°, ∴∠A=90°﹣. 点评: 本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.
24.(10分)(2018?佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
共分享92篇相关文档